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Translates of a subspace, Quotient Spaces 

All right. So welcome once again. In the previous two lectures of this week we saw how to solve 

linear equations, okay? So first application may be that we are seeing of all the theory and ideas 

that we've learned so far. And hopefully it was reinforcing to learn the theory well and think of it 

in abstract terms. And also in solid terms, in terms of numbers, it gives you a very good 

grounding and foundation on what you are doing. And as you are doing it you can know whether 

you are doing it correctly or not, if you know both the theory and the practice of how things 

work, okay? So now let us move on a little bit ahead. What I am going to do in this lecture is 

going to be a little bit abstract. It's an abstract view of how linear maps work and how these 

linear equations work and how they look etc. It’s very important to understand. And this notion 

has a lot of extension in abstract mathematics, a lot of abstract mathematics uses this idea of 

translates and quotients and the translates are called various other terms. They are sometimes 

called cosets of a set etc. And this idea of cosetting and quotienting is very very important and 

crucial. It gives you a nice structure result about the objects that you're studying, okay? If the 

study looks very scary to you, don't be too scared, you'll see it's actually very easy to follow. But 

it's a nice view of what a linear map does and you will see it gives you good intuition and what to 

expect, and it's very good for later use. So this picture of a linear map that you will develop, this 

structural picture of a linear map that we will develop in this lecture is very crucial for, you 

know, as we go further and study more advanced ideas. How to relate everything in a nice way, 

okay? So this is a crucial idea. Let me also warn you it's probably a little bit abstract but I'll try 

and make it as easy and simple as possible with some concrete examples. 

Okay, a quick recap. Once again we are in vector spaces over real or complex fields. And we've 

seen that these linear maps play a crucial role and they are associated with 𝑚 × 𝑛 matrices. We 

saw null and range and Fundamental Theorem very useful in solving linear equations 𝐴𝑥 = 𝑏. 

And elementary row operations make your work very very simple to help you identify the linear 

dependence, independence patterns in the vectors and quickly conclude something about the 

range and null and solutions for linear equations in general, okay? So that's what we saw so far. 

We'll dig a little deeper into linear maps and look at this structure of null and what's going on 

and, you know, the final structure we’ll derive at the end of this lecture will give you nice 

insights into what is going on, okay? So let's proceed. 
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Okay. So what is a translate of a subspace? This notion is very important. So let's say we have a 

subspace, okay? You have 𝑈 inside 𝑉 which is a subspace, and maybe there is another vector, 

okay? This vector is what I have called as 𝑣 in this definition. A vector 𝑣 in the vector space. 

And a translate of the subspace is simply defined as 𝑣 +  𝑈. So now what is 𝑣 +  𝑈? It is a set, 

okay? 𝑈 is a set. How do you add a vector to a set, okay? So if you are confused by that, it’s easy 

to see the definition. 𝑣 +  𝑈 is the set of all 𝑣 + 𝑢 such that 𝑢 ∈ 𝑈, right? So that's called a 

translate. And that's easy enough to see why the definition makes sense, right? So you have one 

vector and you have this subspace. How do you translate the subspace by this vector? You take 

every vector in the subspace, you add this vector to it, okay? So you get a translate, okay? So let 

me quickly show you a nice illustration of how this will look, right? So for instance, it will 

look… So let us take... Maybe I should go into this other, let me go into this white board and 

draw my ℝ2, okay? So ℝ2 is my favorite example as you have seen and gives you a lot of ideas, 

okay? So let us look at a subspace, okay? So this is my 𝑈 in ℝ2, okay? I am looking at ℝ2 being 

the whole 𝑉, okay? This is my subspace 𝑈, and let me look at 𝑣 equals let us say (3, 0), okay? 

So I am translating this subspace by 𝑣. And what is 𝑣? It is 3 units in the x direction and 0 units 

in the y direction. So I am moving this subspace to the right by 3 units. And what will I get? I 

will get a picture that looks like this. It's parallel to this and this will be (3, 0) + 𝑈, isn't it? It’s 

easy to see. 

On the other hand if 𝑣 were to be, let’s say (0, 2), then what am I doing? I am translating this 

subspace 𝑈 by zero positions in the x direction and two positions in the y direction. Plus two. So 



that would look something like this, isn't it? So that would be (0, +2). You can imagine I can do 

a combination now. I might take a 𝑣 to be equal to, I don't know, (−2, +3), okay? So I would 

like to go, you know, minus two positions in the x direction and then plus three in the 𝑦 

direction, okay? What would have happened? I would have gotten, 0 would go somewhere there 

and then from there it would draw. So it will go somewhere there, I think, right? So it's parallel 

to this and then it would go somewhere there, okay? So this would be (−2, 3)  +  𝑈, okay? So as 

you do it, hopefully you are convinced that you always get lines that are parallel to this, you 

know, this subspace by translating. And you can take them anywhere, okay? So this is the picture 

to have in mind when you think of translate, okay? So it is not a bad picture. Except that when 

you go to larger dimensions maybe you can't visualize this translate quite like that, right? So 

when you have larger dimensions, 100 dimension and then a 30 dimension subspace, it's a huge 

thing and then... But still you can think of what is going on and keep this line picture in your 

mind. So I am simply translating the subspace by these vectors, okay? So that's the, that's the 

description of a translate.  
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So there are two immediate possibilities. And I'll show you a lot more possibilities as we go 

along. But there are two immediate possibilities. This vector v that I picked could be inside the 

subspace itself, right? If this vector 𝑣 is in the subspace itself then what will happen if I 

translate? I won't go anywhere, right? Because I am already in the subspace. I am adding 

subspace to subspace, I will only get subspace. So my 𝑣 +  𝑈 will become 𝑈 itself, okay? It's a 

nice thing to see. On the other hand, if 𝑣 is not in the subspace then not only will 𝑣 +  𝑈 be 



different from 𝑈, it will be disjoint from 𝑈. What is disjoint? Disjoint means there is no 

intersection at all. There is no point in 𝑣 +  𝑈 which will also be in 𝑈, okay? They will be 

parallel in some sense, right? So they will not intersect at all, okay? So that is a nice property to 

know, okay? In fact you can say more. You can say something more interesting about translates, 

okay? Supposing there are two vectors 𝑣 and 𝑤 that are given to you from the vector space 𝑉 and 

you look at the two translates 𝑣 +  𝑈 and 𝑤 +  𝑈. It turns out these two translates can either be 

exactly the same or they will be disjoint, okay? When you translate subspaces, you cannot have 

partial overlap, okay? That's ruled out. Not possible, okay? That makes something very 

interesting, right? Just because it's a subspace and you translate... If you translate other sets and 

all, you can do partial overlap very easily, right? But if you translate a subspace, you cannot have 

two different translates partially overlapping. They either fully overlap or they don't overlap at 

all, okay?  
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There's a little proof here given below. I'm not going to go into details. It gets a bit technical, but 

you can prove this. So any two translates... You can also imagine why, right? There's two 

parallel lines. If the shifts are actually different then you're not going to get the same thing. But 

you know, it can exactly overlap also, okay? So you may get the same translate by two different 

things. So maybe I should show you an example by going back to this little board that I had here. 

So notice while I wrote this as (0, 2)  +  𝑈, okay? So maybe I cannot do this. Maybe I should 

show you one little picture here. So notice, so even in ℝ2 if you notice, I start with the 𝑈, okay? 

And then I told you (3, 0)  +  𝑈, right? So let us say you did (3, 0)  +  𝑈. It was something like 



this, okay? This is (3, 0)  +  𝑈, okay? So notice if you take any other point on this translate, so 

this is going to be (3, 0). And what will this be when I do (3, 0) to the right? And depending on 

what this line is, right? So it depends on the, you know, so let us say... Maybe I will take a 

simple form for this line. I will simply take 𝑦 =  𝑥 to keep my life simpler, okay? So this is 𝑦 =

 𝑥. And then if I translate, right, by 3, what will this point be? This point is going to be (0, −3). 

So now the same translate is also equal to (0, −3)  +  𝑈. Think about it. So whether you shift it 

three places to the right... It's a 𝑦 =  𝑥 line. Whether you shifted three units to the right or you 

shifted it three units below, you would get the same line at the end, right? It's not going to change 

because it's 𝑦 =  𝑥 and similarly you can do for anything else also.  
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So while the translate is easily defined, you can get two different vectors of the same subspace 

giving you the same translate, that's possible, okay? So don't think that it's, you know, any two 

translates are always distinct just because the vectors here are distinct, okay? So two different 

translates can be exactly identical or they will not overlap at all. They will be disjoint. What is 

ruled out is partial overlap. You cannot have two different translates partially overlapping, that is 

not allowed at all. That cannot happen with subspaces, okay? So that is the interesting thing here, 

okay? So two different subspaces, two different translates may exactly coincide or they will be 

disjoint. Partial overlap is not allowed, okay? Hopefully that's clear to you. So these translates 

are beginning to look interesting, right? When you do translates with subspaces, they're not so, 

not very generic like sets and moving sets around. They have a particular structure to them, 

okay? So this structure is what we'll exploit to define this notion of a quotient space, okay? So 



you have a subspace U, and this notion of a quotient space. It's, you know, it has the strange 

notation 𝑉 almost divided by 𝑈, that's where the quotient comes from and you'll see why this sort 

of division makes sense, okay? That's basically the set of all translates of 𝑈. You have a 

subspace 𝑈, you keep translating it by different vectors, you know there can be many... Many 

translates may exactly coincide whatever... So you collect all the translates together, you make a 

set out of them, you have your quotient space, okay? So it’s an interesting set to define. You can 

think about the line example for instance. In the line example, if I keep shifting it throughout, I 

would have covered the entire ℝ2 for instance interestingly. But anyway, all the translates, all 

possible translates that you can do to the line, put them all together, you get the quotient space. 

The quotient space contains translates, not just points in ℝ2, okay? So it's a different sort of a set, 

okay? Keep that in mind. Every element of the quotient space is a translate of a subspace, it’s not 

a point in 𝑉. You keep that in mind. I have 𝑈 itself. I will have, you know, some vector plus 𝑈, 

some other vector plus 𝑈, those are the elements of my 𝑉/𝑈, okay? So it turns out...  

How do you find all translates? It looks like, seems like too many of them. Of course there are 

many of them. And how do you quickly find all the unique translates very nicely? There is a way 

to do it, okay? So you can find the unique translates using this, you know, the direct sum vector 

space 𝑊. So you find another subspace 𝑊. You know how to find this 𝑊, 𝑊 subspace such that 

the entire vector space becomes 𝑈 ⊕ 𝑊. This is crucial. This is very important. Once you find 

that, you can write down the list of all unique translates, okay? So that is very important. And 

this direct sum is also very important, otherwise you cannot do that, okay? So I have given a 

little bit of a logic here to tell you that any translate 𝑣 +  𝑈, okay, any vector 𝑣 in the vector 

space 𝑉 and if you look at the translate 𝑣 +  𝑈, you can find a 𝑤 so that 𝑣 +  𝑈 will be 𝑤 +  𝑈, 

okay? So this is not very difficult to figure out why, right? So you will have for any 𝑣 ∈  𝑉. 

Because of this direct sum, you can write it as 𝑢 +  𝑤, right? So there is a 𝑤. So if you look at 

𝑣 +  𝑈, that will be the same as 𝑢 +  𝑤 +  𝑈. But this 𝑢 +  𝑈 will sort of combine together, 

right? What is 𝑢 +  𝑈? That’s the same as 𝑈. So this will be equal to 𝑤 +  𝑈, okay? So that’s a 

quick little logic to tell you that any translate can be written as 𝑤 +  𝑈, okay? So if you're going 

to look at all translates, you don't have to go for vectors outside of 𝑊, your translating vector can 

only be in 𝑊, you exhaust all the vectors in 𝑊 which is this, you know, complementary 

subspace to 𝑈. 𝑈 ⊕ 𝑊 has to be equal to 𝑉. You find a 𝑊 like that, okay? You know how to do 

it, right? You can do the basis extension method to find a 𝑊. Once you find the 𝑊, it's enough if 

you translate by the vectors in 𝑊, you would have covered all the translates. Any translate would 

have been covered. That's one thing that's very nice.  

Another thing that's very nice is - if you have two different vectors in 𝑊 and these two vectors 

are not equal, they should not be equal, then these two translates 𝑤1  +  𝑈 and 𝑤2  +  𝑈 will be 

disjoint, they will not be equal, okay? Two different vectors generally if you take from 𝑉, the 

translates can be coinciding, right? So we saw that it's possible. But if you take two different 

vectors from this 𝑊 subspace which is sort of complementary to 𝑈, and translate by that, you 



will always get something disjoint. You cannot get the the identical variety here, okay? So that is 

also something very very nice, okay? So how do you prove it? You can think about how to prove 

it. Clearly, you know... So 𝑤1 for instance is in the first one, okay? So 𝑤1 belongs to this, 𝑤2 

belongs to this, okay? And you can show 𝑤2 does not belong to this and 𝑤1 or okay, whatever... 

One of these things. So 𝑤2 will not belong to this and that's enough to show that they are 

disjoint, right? Because we know that any two translates will have to fully match or be disjoint 

and if I show that 𝑤1 belongs here... That's very easy because 𝑈 has 0. So 𝑤1 is there. But you 

can also show 𝑤2 does not belong here and 𝑤2 belongs here. So these two are not identical which 

means they have to be disjoint, okay? So that's the way to prove it. I am not going into too many 

details here. You can write down a proof for it if you like. But this is, this result is important, 

okay? So we have this result that this quotient space which is the set of all translates of 𝑈 can be 

written down in this precise way. You only pick the vectors from this subspace 𝑊 and translate 

the subspace by those vectors alone. Then you will get the entire set of all translates, okay?  
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So maybe I should illustrate this once again with my famous ℝ2 example. So let us look at the 

ℝ2 example and look at the 𝑦 = 𝑥 line, okay? So this is 𝑈 which is 𝑦 =  𝑥, you can find a 𝑤, 

right? 𝑊 is an, x axis is a 𝑊, okay? There are so many 𝑊's. We know that there are many you 

can find. But x axis is a 𝑊, so it is enough if you translate 𝑈 in the horizontal direction, no? Its 

𝑦 =  𝑥, you translate 𝑈 horizontally, which is what translating by the x axis means, right? So 

you pick vectors from 𝑊, you will only translate horizontally, 𝑦 is always zero, right? But 

horizontal translation is enough, you would have covered all the possible translates wherever you 



want to go, you know? It's enough if you, because it's a subspace it's enough if you translate 

horizontally, okay? So only horizontal translates are enough for you, okay? So think about why 

that is true. So the quotient space is given only by translates from 𝑊. You don't need to worry 

about other translates, okay?  

So that gives you this wonderful result that the translates of 𝑈 partition 𝑉. What is a partition? If 

you have a set, what is the partition of the set? You divide up the set into groups which don't 

intersect, okay, right? But together they should make up the whole set. Only then it's a partition, 

okay? So you have a set, you divide it up into multiple sets, together they should make up the 

whole set. But no two of them should intersect and that's what's happening in this quotient space, 

right? I know no two of them intersect but together they should make up the whole space. So 

how do I know they make up the whole space? Because every translate is included. Any vector 𝑣 

belongs to 𝑣 +  𝑈, isn't it? Any vector that you pick in your vector space 𝑉 will belong to a 

translate because if it doesn't, you simply translate by that vector, right? 𝑣 +  𝑈, that has 𝑣 for 

sure because 𝑈 has zero, no? So 𝑣 +  𝑈 has 𝑣. So set of all translates covers the whole vector 

space 𝑉. But if you look at this quotient space, they don't intersect, okay? There it’s disjoint. So 

they end up being a partition, okay? So this partition is very interesting and it gives you a 

structure result, right? A subspace partitions the entire vector space through its translates, okay? 

And the translates can be exactly identified by looking at this 𝑊 space which, you know, direct 

sums to 𝑉 taking all the vectors from that and translating by that, okay?  
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So nice enough picture that you have, Good structural result. How does it help us with linear 

maps and equations? Here is a picture for you to keep in mind, okay? So the important aspect of 

a linear map is the null space. We saw that the null played a very crucial role. Null is the 

subspace of 𝑉 which maps the vectors and vectors in the null space get mapped to zero, okay? So 

now notice what happens when you take this null space and do a quotient of that null space. With 

that null space of 𝑉, you do 𝑉/𝑛𝑢𝑙𝑙  𝑇, okay? You look at the quotient space defined by the 

subspace 𝑛𝑢𝑙𝑙 𝑇, okay? What will happen here? How do you do it precisely if you want? You 

pick up a, find a subspace 𝑊 so that 𝑉 becomes 𝑛𝑢𝑙𝑙 𝑇 ⊕ 𝑊, and then 𝑉/𝑛𝑢𝑙𝑙 𝑠𝑝𝑎𝑐𝑒 is a set of 

all 𝑤 +  𝑛𝑢𝑙𝑙 𝑇 so that 𝑤 ∈  𝑊, okay? So I know now this is a partition of 𝑉. Remember this is a 

partition of 𝑉. So let's draw a picture maybe a little bit later. But look at what is interesting here. 

If you look at T operating on 𝑤 +  𝑛𝑢𝑙𝑙 𝑇, any vector in 𝑤 +  𝑛𝑢𝑙𝑙 𝑇, what will happen? You 

will only get 𝑇𝑤. Why? Because the 𝑛𝑢𝑙𝑙 𝑇 part gives you zero, right? So 𝑇 operating on a 

particular translate of 𝑛𝑢𝑙𝑙 𝑇, all the vectors in the translate when acted upon by 𝑇 give you the 

same vector at the output, okay? So that is an important thing to see, okay? So this way the 

𝑛𝑢𝑙𝑙 𝑇, null space of a linear map has translates. The translates cover the whole vector space 𝑉 

and every translate when operated upon by 𝑇 goes to the same vector 𝑇𝑤, right? Nothing else. So 

that is an interesting picture to keep in mind. I will draw an exact picture for you soon enough 

but let us look at the properties first, okay?  

And if you have 𝑤1 not equal to 𝑤2, then 𝑇𝑤1 is not equal to 𝑇𝑤2, that's also true, right? 

Because 2 different things don't get mapped to the same thing, okay? So you can look at why this 

is true also. If you want, you can write down a separate proof for this, it is not very hard. We 

have seen this before, okay? So this is very very interesting from a point of view of a linear map. 

Let me draw the picture here. Linear map 𝑇 maps the quotient space to the range in a one-to-one 

manner. Let me draw a picture for you to illustrate what is going on here. So I have 𝑉. So this is 

a powerful picture to remember about a linear map 𝑇. I have 𝑉 and there is a linear map which 

takes me to the range of 𝑇, okay? So this is range 𝑇 and this linear map 𝑇: 𝑉 → 𝑊, ok? The 

entire thing comes to this range, okay? There are lots of points in the range, I just draw them like 

that. Several points in the range, okay? Now let us say there is a null which is... I will draw like 

this. It’s okay, this let’s say is 𝑛𝑢𝑙𝑙 𝑇. What am I going to do? I am going to do a quotienting of 

𝑉 with the null, okay? So I am going to define all these translates of the null space and notice 

what's going to happen here. The translates will look sort of like this. So they will partition 𝑉. So 

what is the meaning of partitioning? So they're going to start looking like this. So maybe you 

will have a translate which is on top like this. There will be another translate like this, translate 

like this, right? So I do not know how it will look. But they will partition 𝑉, okay? So this is an 

important thing to remember. What is partitioning? They will divide up 𝑉, carve up 𝑉 into 

disjoint parts. So this is how the translates would look like. So these are all translates of 𝑤1  +

 𝑛𝑢𝑙𝑙 𝑇. This could be, you know, some 𝑤2  +  𝑛𝑢𝑙𝑙 𝑇 etc. like that, okay? Remember there will 

be an infinite number of translates, okay? So every space here as infinite number. It was all real, 



right? So there will be infinite number of translates. All of that is true. But this is how the picture 

would look, okay? So keep this picture in mind.  
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So now what is going to happen now? When 𝑇 operates on any translate, okay, for instance there 

is this 0 here. When 𝑇 operates on the null space, what happens? It takes every vector in the null 

space to 0, okay? To just one point in the range. Now there will be a point here which is 𝑇𝑤1, 

okay? When 𝑇 operates on 𝑤1  +  𝑛𝑢𝑙𝑙 𝑠𝑝𝑎𝑐𝑒, every point in the translate 𝑤1  +  𝑛𝑢𝑙𝑙 𝑠𝑝𝑎𝑐𝑒 of 

𝑇 gets mapped into 𝑇𝑤. When 𝑇 operates on 𝑤2  +  𝑛𝑢𝑙𝑙 𝑠𝑝𝑎𝑐𝑒, every point in 𝑤2  +

 𝑛𝑢𝑙𝑙 𝑠𝑝𝑎𝑐𝑒 gets mapped to 𝑇𝑤2, okay? So if you look at the map 𝑇 as mapping from the 

quotient space of 𝑉/𝑛𝑢𝑙𝑙 𝑇 to the 𝑟𝑎𝑛𝑔𝑒 𝑇, you actually have a one-to-one map, okay? So this is 

what's going on when you define a linear map. When you have a linear map that's defined in 

whatever way you like, through a matrix or something, what immediately happens is a range gets 

defined, a null space gets defined, the translates of null space partition 𝑉 and every translate goes 

one-to-one to a single point in the range of 𝑇, okay? So this is the structural result. This is the 

picture that you should have in mind when somebody says a linear map, okay? Every linear map 

will look like this, okay? You may have different cases. The null space might be trivial in which 

case, you know, the translates are all individual points only. There is nothing, no set there, right? 

Null space is trivial. So every translate is just a point. And then every point goes one-to-one to 

the range, right? Because it becomes an injective map, okay? And the null space could be a 

bigger set in which case the translates are actually infinite. Each of the translates have a lot of 

points, but all the points in every translate will go into only one point in the range, okay? So this 



picture of a linear map is very crucial as we go forward and study more intricate properties of 

linear maps. Linear map takes 𝑉 to the range of 𝑇, okay? And takes null space to zero. Every 

translate of null space goes to a unique point in the range of 𝑇 and you can find the points in the 

translates very easily using this, you know, complementary sort of subspace to 𝑇 which directs 

sums to give you the whole 𝑉. And they are all tied up in this very nice fashion, okay? So this 

picture of a linear map, don't forget it, keep it in your mind. It will help you a lot in 

understanding so many more results that we'll see going forward, okay?  
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So I have a little bit of an illustration for you to show how this result actually works out in 

practice. So maybe you can think about it. Here is a very simple example. [(1;  2) (3;  6)]. I'll go 

through this example very fast. If you look at the range of 𝑇, span (1, 2), dimension of 𝑛𝑢𝑙𝑙 𝑇 is 

1. You can do elementary row operations to simplify this. So you quickly identify that the null is 

span of (−3, 1). So 𝑊 is span of (1, 0). Just take the x-axis as 𝑊, okay? And then all that this 

result says is the matrix multiplied by any element in the span plus the null space, any element in 

w plus some vector in the null space will give you 𝐴 times (1, 2). So this is sort of the result 

which is the, you know, the translates are giving you. I mean this picture sort of depicts what is 

meant by this. So it's not actually a very complicated result. But at the same time you can see 

how this works out, right? So you translate the null space. Well I've put (−3, 1) here just to show 

you. You can put a 𝑏 here also, right? So you can put for instance, you can put a 𝑏 here. So 𝑏 can 

be an arbitrary thing here, to illustrate that, you know, whatever vector you add here from the 



null space, whatever translation you do, you always go to 𝑎(1, 2). So this is the unique map from 

𝑊 to the range that you have, okay? So this is a quick example which illustrates this, okay?  

So let me summarize how this will help you in terms of solving linear equations. What is the 

connection between this structural result and linear equations? We have this wonderful structural 

result that the quotient space 𝑉/𝑛𝑢𝑙𝑙 𝑇 is a one-to-one map under 𝑇, or a version of 𝑇 if you 

think about it, to 𝑟𝑎𝑛𝑔𝑒 𝑇, okay? So 𝐴𝑥 = 𝑏 has this very simple characterization. If 𝑥 ∉

𝑟𝑎𝑛𝑔𝑒 𝐴, there is no solution. If 𝑥 ∈ 𝑟𝑎𝑛𝑔𝑒 𝐴, you’ll find one 𝑢 such that 𝐴𝑢 = 𝑏, and the 

solution becomes 𝑢 + 𝑛𝑢𝑙𝑙 𝐴, okay? So this is a good point to stop for this week.  

So this week we've seen a nice application of all this theory that we built. How to solve linear 

equations, how to do elementary row operations and this crucial interesting structural result 

about how a linear map really works in terms of quotienting with the null space and having this 

one-to-one map between the translates of the null space and individual points in the range of the 

transform, okay? Hope this week was interesting. And we'll proceed further and look a bit closer 

at linear maps going forward in the next week. Thank you. 
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