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Hello. Welcome to week 4 of lectures in Applied Linear Algebra. This week we're going to sort of 

consolidate all that we learnt about, you know, linear maps, matrices, row space, column space 

and all that. I mean actually row space we didn't really learn, but we will look at what row space 

is. We've been looking at column space a lot. What is so sacred about the column? We might as 

well look at the row, right? So we’ll look at things like that. Then we'll look at, I mean tie up as 

many things as possible together. I'll point out a few important properties that you should know. 

Few things that happen because you arrange numbers in the form of a matrix. Some interesting 

properties follow because of that. So it's sort of like a consolidation of some important properties 

for linear maps and their connection to matrices. So rank will play an important role as well. So 

we'll talk about rank quite a bit, discuss it in some more detail than what we did in the previous 

lectures. So let us get started.  
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Okay, quick recap. We are talking about vector spaces over the real field and complex field. We 

have this association between linear map 𝑇: 𝔽𝑛 → 𝔽𝑚 and an 𝑚 × 𝑛 matrix 𝐴. We associate the 

null space of this matrix with the null of the linear map itself. We have the column space of the 

matrix 𝐴 associated with the range of the linear map. And then we have this wonderful theorem 

which connects the dimensions of these two things. And then we looked at how linear equations 

can be solved using ideas from linear maps and, you know, null and all that. And we saw that the 

solution is a translate of the null space. And there is this nice little structural property for linear 

maps. How do you visualize a linear map? You have this partitioning of the vector space into 

translates of the null space and every partition, every translate goes to one point in the range. And 

that's how every point in the range is covered. It's a one-to-one map and that's how every linear 

map looks. So that's a nice picture to retain in your head, okay? So now let's look at this connection 

a little bit more, firm up some more properties. Rank and, you know, what the matrix is, what is 

row, what is column, you know? We will also look at this transpose operation which goes from 

row to column and what are the various results around these kinds of things. Now we will also 

extend these elementary row operations to elementary column operations and then get to a much 

more reduced form and look at what happens because of that, okay? So that is going to be our 

lecture, the first lecture for week 4, okay?  
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So first let me begin with row space. We have seen this matrix, 𝑚 × 𝑛 matrix over the field 𝔽. We 

know that it represents a linear map from 𝔽𝑛 →  𝔽𝑚. We have looked at the column space and how 

the column space corresponded to the range of 𝑇. So that's the convention we took, right? We took 



a vector and multiplied the matrix with the vector on the right, so the column space naturally 

became the range of the linear map in the way we associated, you know, list of coordinates with 

the vector, okay? So that's what we did. What about the rows, okay? So it turns out the rows also 

are elements of 𝔽𝑛, right? Every row in an 𝑚 × 𝑛 matrix comes from 𝔽𝑛, okay? It is an 𝑛 

coordinate vector with elements from 𝐹. So naturally you can associate a vector with every row. 

So you can also think of the span of all the row vectors, right? So there are 𝑚 row vectors and 

together they span a subspace of 𝔽𝑛. And that subspace one can call as row space, okay? Just like 

columns span the column space, the rows span the row space, okay? So it's easy enough to imagine 

what it is, okay? So we saw, we defined the notion of column rank or the rank of the matrix itself. 

I referred to it as the rank itself, it became the dimension of the column space of 𝐴, okay? What 

about the row space, okay? What about its dimension? Of course you can call it the row rank, 

right? The dimension of the row space can be called the row rank. But is there a connection 

between the row rank and the column rank? Should there be any connection at all? It looks, on the 

face of it, it looks like, you know, the rows are one below the other, the columns are this way... 

But there is, like, a very intricate connection between the two, you know? I mean the entries in the 

rows and entries and the columns are exactly the same, except that you think of them differently, 

right? So is there going to be a connection between the dimension of the row space, dimension of 

the column space? First of all the row space and column space are not very directly connected, 

right? Row space is a subspace of 𝔽𝑛, right? While column space is a subspace of 𝔽𝑚, okay? There 

is no real... I mean the 𝑚 and 𝑛 can be very different. 𝑚 can be 20, 𝑛 can be 20000, right? So these 

two are not really, they don't look similar. But is there any connection between these two spaces? 

Particularly in terms of dimensions, is there, can you arrange it so that, you know, the dimensions 

can be different or not etc.? And that can be very nicely answered and that's the next result that I'm 

going to put out.  

It turns out for any matrix 𝑚 × 𝑛, row rank will be equal to the column rank, okay? So you cannot 

put, I cannot create an 𝑚 × 𝑛 matrix for which the dimension of the row space will be different 

from the dimension of the column space, okay? So for the first... I mean if you're surprised by this 

result, there's many, very many ways to think about it. Here is one little way in which I think about 

it quite often. I think of, say, you know, this is an example I take to justify to my own head why 

this sort of makes sense. So let us say we take a 2 × 100 matrix, okay? So this is a matrix I take, 

I start putting entries in it, you know? I have so many entries, okay? So if you look at the column 

space, okay, so it ends up being a subspace of ℝ2, okay? So what are the possible dimensions? 

Dimensions could be 0, 1 or 2, isn't it? Now notice what happens when I look at the row space. 

Even though the row space is a subspace of ℝ100, okay? You start thinking that the dimension 

could be you know up to 50, 60 and all that, all that is not possible, right? Why? Because the 

number of rows, the number of vectors in my spanning set itself is only two, okay? So the 

dimension in spite of all this could only be 0, 1, 2, right? It can't be whatever I want, right? So it's, 

so you can see that even though the sizes are different, because of the way the number of, you 

know, number of columns… While number of columns becomes the dimension, the number of 



rows limits the dimension of the column space. Likewise, you know, the number of rows also ends 

up limiting the dimension of the row space, okay? So there is this, in this example at least you see 

that the least number is two and that imposes a constraint, right?  
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So even if you go the tall column wise, then the number of columns will start imposing some such 

constraint. So it's sort of natural to expect that the row space and column space dimension wise 

have to be tied up a little bit. And I guess perhaps the fact that they have to be equal is part of a 

strong tie up and it's not maybe what you expect naturally. Maybe, you know, you can say within 

each other or something, but they're exactly the same, right? You can't do anything beyond that. 

So this is a popular result called row rank equals column rank. You'll see a lot of pages on it if you 

search about it. Lots of ways to prove it. I'm going to give you a sort of a simple proof which may 

be a bit surprising. At least in this course we have not seen this, okay?  

So what's the proof going to be? So I'll start by assuming... So the overall principle of the proof is 

- I want to show row rank equals column rank. So what I will show is that row rank is less than or 

equal to column rank, okay? All right. So that's what I'll show first. So how do you show row rank 

equals column rank? One approach is to show row rank is less than or equal to column rank and 

then also show column rank is less than or equal to row rank. If I do both, then I know that the two 

have to be equal. But in this case it turns out row rank less than or equal to column rank itself is 

enough, okay? See for an arbitrary matrix, 𝑚 × 𝑛 matrix, I'm showing row rank is less than or 

equal to column rank, okay? So it turns out that itself is enough to make it equal. You will see 

there is this little trickery you can do. You'll see when it comes. It may be a bit surprising, but it's 



an easy enough trick that you can see through. So all I have to do, it turns out, is to show that row 

rank is less than or equal to column rank, okay? So once I do that, it turns out I'm done, okay? So 

for an arbitrary matrix, if I show row rank is less than or equal to column rank, I have also shown 

that row rank has to be equal to column rank. You'll see why that comes out. Maybe it's a bit 

surprising but let me keep the suspense for a little while.  

So let's begin by showing row rank is less than or equal to column rank, okay? So for that I'll 

assume the column rank is 𝑟, okay? Some number 𝑟, right? It should be between, you know, 0 and 

𝑚, 0 and 𝑛 also. So we will see later on how these things are related, but okay let us say column 

rank is 𝑟, okay? Which means the column space of 𝐴, right, has to be in the span of 𝑟 linearly 

independent vectors 𝑣1 to 𝑣𝑟, right? So that's the meaning of dimension, isn't it? So dimension of 

a space is the number of vectors in the basis. Number of vectors in the basis which is also a 

spanning set. So the column space 𝐴 will be equal to span of 𝑟 vectors, right? So in particular every 

column of 𝐴 belongs to the column space of 𝐴, right? So I can write every column of 𝐴 as a linear 

combination of 𝑣1 to 𝑣𝑟. And that's the same thing as saying that rank is 𝑟, column space has 

dimension is 𝑟, everything is the same, right? So the jth column of 𝐴, I could write it as 𝑐1𝑗𝑣1  +

⋯ +  𝑐𝑟𝑗𝑣𝑟, okay? So 𝑐1𝑗, … , 𝑐𝑟𝑗 and all are scalars coming from the field. So they scale each of 

these vectors and you make a linear combination, you get the jth column of this matrix 𝐴, okay? 

So I can do this for every column, okay? So now this tells me I can rewrite 𝐴 in the following 

form. What form? Notice what I am doing here. I am writing 𝐴 as the product of two matrices. 

What is the first matrix? First matrix has 𝑟 columns and each of the columns are the vectors in the 

spanning set, okay? So 𝑣1 is the first column, 𝑣2 is the second column, so on till 𝑣𝑟 that's the last 

column. That's how I make my first matrix. The second matrix is basically composed of these 

coefficients I got to form the columns of 𝐴. So notice what I am doing with the first column of the 

second matrix. It is 𝑐11 all the way down to 𝑐𝑟1. So when I multiply, when I multiply the first 

matrix with the second matrix, the first column of the product will exactly be the first column of 

𝐴, the second column of the product will be the second column of 𝐴 and so on, right? So I can go 

on up to the 𝑛th column which would be 𝑐1𝑛, … , 𝑐𝑟𝑛. That multiplying 𝑣1 to 𝑣𝑟 will give me the 𝑛th 

column of 𝐴. So this is a proper product. So this whole thing I’ve rewritten in this fashion, okay?  

So once you write like this, you notice that every row of 𝐴 now... So we've been looking at it 

column-wise. Now switch around and look at what's happening in this product row-wise, okay? 

So I know that every row of the product is a linear combination of the rows of the second matrix, 

right? In a product of two matrices, every column of the product is a linear combination of the 

columns of the first matrix, every row of the product is a linear combination of the rows of the 

second matrix, right? So now look at it that way. So every row of 𝐴 becomes a linear combination 

of 𝑟 vectors, okay? Isn't it? So every row of 𝐴 is a linear combination of r vectors which means 

every vector in the row space is a linear combination of those same 𝑟 vectors. Which means there 

is a spanning set of size 𝑟, okay? For the row space there is a spanning set of size 𝑟 which means 

the dimension of the row space is less than or equal to 𝑟, row rank is less than or equal to 𝑟, okay? 



So hopefully you follow the proof. It's a simple enough proof. So what I have shown here, right, 

is that the row rank of an arbitrary matrix 𝐴 is less than or equal to column rank of 𝐴.  
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So now comes the suspense. The suspense is already out in the last bullet there. So once you show 

it for an arbitrary matrix, that's enough because you can now look at 𝐴𝑇. What is 𝐴𝑇? You must be 

familiar with this operation. You just make all the rows as columns and columns as rows, right? 

You flip it around and you'll get an nxm matrix. Now for that matrix, rows and columns are 

interchanged, right? So row space becomes column space, column space becomes row space. Now 

for that 𝐴𝑇 if I use the same result that row rank is less than or equal to column rank, I'll end up 

getting column rank of 𝐴 is less than or equal to row rank of 𝐴 because you know row rank of 𝐴𝑇 

is less than or equal to column rank of 𝐴𝑇, okay? Using this simple little transpose trick, once you 

show row rank 𝐴 is less than or equal to column rank 𝐴, in fact it turns out column rank 𝐴 is also 

less than or equal to row rank 𝐴 and both have to be exactly equal, okay? So this is the little trick 

here that, you know... So you can see why the transpose plays an important role. So the rows and 

columns are not really, you know, sacred in any one way. You can call the columns as rows and 

rows as columns. It is just a convention in some sense, right? So when you can flip it around, if 

you can show one is less than or equal to the other, that is good enough, okay? Both have to be 

equal. All right. So this is the little proof that, you know, row rank of a matrix has to be equal to 

the column rank. So the dimension of the row space, dimension of the column space is the same. 

So that is why we are justified when we say rank of a matrix. You do not have to say column rank 

of a matrix, row rank of a matrix. Both have to be equal, okay? So that's a nice result to know.  



Okay, so let's just sort of assimilate all these things. A whole bunch of results in this area of matrix 

transpose, invertibility, rank... So it's good to know these results and know to be... I mean you 

should be able to recollect them very quickly so that it's useful to, you know, use it when you have 

to, in some applications or something you should be able to quickly recollect. So let's just put some 

results together, okay? So you have this 𝑚 × 𝑛 matrix 𝐴. A represents a linear transform from 𝔽𝑛 

to 𝔽𝑚, right? Now 𝐴𝑇, if you switch the rows and columns okay, represents a linear map from 𝔽𝑚 

to 𝔽𝑛, right? The other way around, okay? So is there a connection between these two linear maps? 

It turns out there is, but maybe not immediately apparent. We will think about it. I mean later on. 

So you see for instance, if I have to draw a little picture here... So I have 𝔽𝑛 and then I have 𝔽𝑚. 

A represents a transform from here to here, right? And 𝐴𝑇 represents a linear map, a linear 

transform from 𝔽𝑚 to 𝔽𝑛. Is there a connection between these two? Is there a connection is a 

natural question, right? So maybe right now it’s not quite apparent what that connection is and 

later on we'll need some more study to figure out what that firm connection is. It turns out there's 

lots of interesting things you can say about 𝐴, 𝐴𝑇, how they work together.  

So for instance, if you can imagine this... I take a vector. With 𝐴, I go to 𝔽𝑚. And with 𝐴𝑇 I can 

come back, right? So what has happened overall in the round trip, right? So you can think about 

those kinds of problems later on, these are slightly advanced questions. We'll ask these questions 

later on in the course and, you know, we'll study those things a little bit more in detail. But for now 

it's just a linear map. It represents some linear map from 𝔽𝑚 to 𝔽𝑛 and already there's lots of tight 

properties between these two things, right? The row space of 𝐴 is equal to the column space of 𝐴𝑇, 

the column space of 𝐴 is equal to the row space of 𝐴𝑇 and the rank is the same for both 𝐴 and 𝐴𝑇, 

right? The spaces are all the same, they have all the same dimensions... So, well, spaces are not all 

the same, you know what I mean. But the dimensions of the spaces are all the same so you have 

the same rank, okay? So that's good to know.  

So what happens in particular when the matrix is square, okay? So when 𝑚 is equal to 𝑛, you can 

sort of talk about invertibility in that regime, right? And what happens to invertibility? So you can 

see, if 𝐴 is invertible, the column space column rank, rank has to be full, right? Rank has to be 𝑛 

which means the columns are linearly independent. And together they have to span the whole 𝔽𝑛. 

So columns become the basis. Rank of 𝐴 equals 𝑛.  𝐴 is invertible, rows are linearly independent, 

rows become a basis, rows you know linearly independent... Notice what's happening. So think of 

this result. Supposing somebody asks you to construct a matrix who's a square matrix. The columns 

have to be linearly independent but the rows have to be linearly dependent. Can you do that, okay? 

A square matrix where the columns have to be linearly independent but the rows have to be linearly 

dependent. Is that possible? It's not possible, right? You know that's not possible because the rank 

has to be the same. So just by ensuring linear independence on the rows, on the columns for a 

square matrix, you also enforce the linear independence for the row, okay? So these are a sort of 

coupling that you see between these rows and columns. So when you put an entry, that entry goes 

into both the row and the column. So it's sort of, you know, putting constraints on one implies 



constraints on the other, okay? So this is nice to know. So 𝐴 and 𝐴𝑇 you see in the square case, 

they are tied up in the invertibility also, okay?  

What happens when it is non-square? So here you can say some inequalities. You know that the 

rank of 𝐴 has to be upper bounded by the number of rows as well as the number of columns, isn't 

it? So if you think about it, both the dimension of the row space and the column space enter the 

picture. So the number of rows as well as the number of columns is an upper bound on the rank. 

So the rank is always upper bounded by the least of the two dimensions, okay? So that's a good 

thing to remember. But one can't talk about invertibility and all that. We'll say a little bit more 

about null spaces and all that going forward. Now the same thing holds with rank 𝐴𝑇, right? Even 

when it's non-square, rank 𝐴 or rank 𝐴𝑇, they're both the same so they are upper bounded by the 

least of the two dimensions, okay? So this is a good thing to remember, just some sort of various 

facts. I mean, most of them are clear but it's good to recall these things or remember these things 

sort of by heart to know what will happen, okay? So that's a brief thing about this.  
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Okay. So here is another interesting little result, okay? So notice what is happening here. So you 

have a linear map 𝑇: 𝑉 → 𝑊, okay? Now supposing, okay... So it is good to draw a picture, I think 

a picture would help, okay? Supposing I have 𝑉 here and then a 𝑊 here, and then I have a linear 

map 𝑇 going from here to here. And let us say I have an invertible map going from 𝑉 to 𝑉, which 

I call 𝑆 and an invertible map going from 𝑊 to 𝑊 which I call 𝑈, okay? Both of these are invertible, 

okay? 𝑆 and 𝑈 are invertable. So now notice what happens when you do the composition 𝑇𝑆, okay? 



When you compose 𝑇𝑆 you take a vector, you apply 𝑆 first. Notice when you apply 𝑆 first, you're 

not really doing anything, any change, you know? I mean it's an invertible thing. Whatever you 

got here you can go back also, right? And then you apply 𝑇, okay? So nothing should really change, 

right? When I say nothing should really change, you should be careful with what changes. The 

operator changes, that's why I put the bullet below, okay? Is 𝑇 = 𝑇𝑆? No. The operator changes 

definitely, okay? Maybe I should give you an example, a little bit to emphasize what I mean by 

this, okay? So let us take a simple example. So let us say I put a 2 × 2 case, okay? So just the 

identity operator, okay? So this is just identity, right? Notice what happens when I multiply on the 

left with, say, an upper triangular or a lower triangular matrix [(1;  2) (0;  3)]. Let's say I do this, 

okay? This becomes, you know how to do this multiplication, right? So you get this. Now this is 

a different operator, right? So these two are different clearly, right? So it’s sort of a trivial example, 

but just to drive home the point, when you multiply or when you compose with another invertible 

operator, this is invertible, you do not get the same operator. The operator is different. Operator 

has changed.  
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This one is identity, this is clearly not identity, right? So the operator will change when you 

compose with 𝑆. Or even 𝑈𝑇, you know? You go to 𝑊 and then you compose on the other side 

also. Even there the operator changes, okay? Or you could compose on both sides. 𝑈𝑇𝑆. The 

operator changes, okay? But because 𝑈 and 𝑆 are invertible, whatever you did with 𝑆 you can sort 

of undo. So the dimensions won't change. Dimensions for the range, dimensions for the null and 

all won't change, right? How do you quickly prove this? Think about how you can quickly prove 



this, it is not very hard. If you look at 𝑇𝑆, 𝑈𝑇 and all that, any vector in the range of 𝑇, right, will 

also be, you can also find, you know, the same vector or a corresponding version of it when you 

multiply with, compose with 𝑆 and compose with 𝑈, right? You just do the inversion of that and 

then you can go back to this, okay? So think about what I meant by that. You can write down a 

quick proof for these things, vector to vector you can do a one-to-one map between the range of 

𝑇𝑆 and the range of 𝑇, range of 𝑈𝑇 and range of 𝑇, range of 𝑈𝑇𝑆 and range of 𝑇. Once you do that 

one-to-one map, you know that the range has the same dimension. It will have the same dimension 

with or without the multiplication, okay? And also notice the fundamental theorem doesn't change, 

right? So you’re still in the same 𝑉 and you can still apply the same thing. So dimension of the 

null space won't change, but the spaces themselves will change, the range will change, but the 

dimension will not change, okay? So keep this in mind. So this is something very useful to know, 

okay?  
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So now what is the corresponding result for matrices? In the matrices world, suddenly it might 

look all very different. So if you have A 𝑚 × 𝑛 matrix and 𝐵 is an 𝑛 × 𝑛 invertible matrix and 𝐶 

is an 𝑚 × 𝑚 invertible matrix, then what we are saying from here is 𝑟𝑎𝑛𝑘 𝐴 = 𝑟𝑎𝑛𝑘 𝐴𝐵 =

𝑟𝑎𝑛𝑘 𝐶𝐴 = 𝑟𝑎𝑛𝑘 𝑜𝑓 𝐶𝐴𝐵, okay? So because of the invertibility, rank doesn't change. Both of 

these are just analogous results, right? So you know that these are the same results. Whether you 

compose the linear map or multiply with the matrix, you are doing the same thing, okay? So these 

two are analogous results, okay? So this gives us a lot of interesting things to do, right? For instance 

we've been looking at a matrix and we've been doing elementary row operations, right? To change 



the matrix to a form that is suitable. So what we are showing with this result is elementary row 

operations do not change the row space, okay? So this may be not from this directly, but the second 

point - elementary row operations do not change the rank, okay? So think about why that is true. 

So why do elementary row operations not change the row space? Because they are invertible, 

okay? The row space is not changed when you do elementary row operations, that's sort of easy to 

see. But the rank also has not changed. We have seen why that is true here. But keep in mind - 

elementary row operations can change the column space, okay? The column space can be changed. 

I showed you a little example with the identity matrix. Maybe there it's not very clear, but you can 

see other examples where the column space changes. So maybe I should give you an example here 

for this. Why is it that elementary row operations can change the column spaces. It's easy to come 

up with an example. So you take an example where maybe you have, you know, [1 2; 2 4], okay? 

So what is the column space? Now the range of this linear operation, this is basically span of (1, 2), 

isn't it? It's just the dimension 1. If you want, you can plot it in the x-y plane, it will be a certain 

line, right? A line that goes through.  
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Supposing I do this elementary row operation. What is the elementary row operation I can do here? 

I can retain the first row, okay? I can do 𝑟𝑜𝑤 2 =  𝑟𝑜𝑤 2 −  2(𝑟𝑜𝑤 1), okay? So this is my 

standard elementary row operation. So 𝑟𝑜𝑤 2 =  𝑟𝑜𝑤 2 −  2(𝑟𝑜𝑤 1), okay? So that is the 

operation. 𝑟𝑜𝑤 2 =  𝑟𝑜𝑤 2 −  2(𝑟𝑜𝑤 1). If I do this, it is the same as multiplying like this. You 

know what I will get. [1 2;  0 0]. And what's the column space of this guy? It equals, you know, 

span of (1, 0), okay? So clearly these two are not equal, okay? But the dimensions are the same, 



okay? So remember this. This is very important to keep in mind. So when I did an elementary row 

operation, I cannot change the row space. Row space will remain absolutely the same, I cannot 

change the row rank, I cannot change the column rank but I can change the column space by 

elementary row operations, okay? So something to remember. Keep that in mind. You can see 

clearly how it changes. A simple example, you can convince yourself that that is true, okay?  
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Now one can also do elementary column operations. I have so far not spoken about column 

operations. But now that we have 𝐴𝑇 also in our midst, you can do elementary column operations. 

So how do you think of elementary column operations? Elementary row operations are 

multiplication by invertible matrices on the left. Elementary column operations will be 

multiplications by these elementary column operators on the right, okay? So you can do the same 

thing. When you do 𝑐𝑜𝑙𝑢𝑚𝑛 2 =  𝑐𝑜𝑙𝑢𝑚𝑛 2 −  2(𝑐𝑜𝑙𝑢𝑚𝑛 1), you're multiplying by a matrix on 

the right. In fact, the same matrix you put it on the right. Instead of operating on the rows, it will 

operate on the columns, okay? A very similar matrix. So maybe I should show you how that works, 

just a quick example. So supposing you have a matrix. Maybe I will take a slightly different 

example [(1;  2;  3) (4;  5;  6)], okay? Supposing you want to do 𝑐𝑜𝑙𝑢𝑚𝑛 2 =  𝑐𝑜𝑙𝑢𝑚𝑛 2 −

 4(𝑐𝑜𝑙𝑢𝑚𝑛 1), okay? You might do this. So this would be... So the first column I want to retain, 

okay? The second column I want to make -4(column 1) and 1 for column 2. Remember every 

column here multiplies the columns, right? So when I want to retain the first column, I put 1 0, 

when I want to multiply the first column by -4, I put a 1 here, I get this. So this would give you 1 

2 3, here I would get -4. So this will become 0 -3 -6, okay? So this is what happens. So now what 



can column operations do? Column operations, okay, they cannot change column space, right? 

They cannot change rank, right? Row rank, column rank, whatever? But they can change row 

space, okay? This was maybe not a very good example to show you why they can change the row 

space, but they can change row space, okay? So just by the same argument I gave for the column 

space before, okay? So that is how column operations work. You can think of column operations 

as row operations on 𝐴𝑇. You know 𝐴 and 𝐴𝑇 are sort of cousins in so many different ways. But 

keep in mind that when you want to retain the column space, you should not do the column 

operations, it can change it, okay?  
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So now there are different types of column operations. Remember there was a column swap, right? 

Column swap doesn't quite change the column space, right? It just changes the ordering. But you 

know scaling and you know... So column okay? So I should be careful here. Column swap doesn't 

change the column space, column linear combinations does not change the column space, scaling 

of columns does not change column space. But you know, can the column swap change the row 

space? Absolutely it can, right? So think about how a column swap can change the row space, you 

know? I mean if you can have a column, you can have a matrix which is, you know, first row (0 1) 

and (1 0) and or, maybe [0 1; 0 0], right? So that's a simple example to take. [0 1; 0 0]. If you 

swap the columns, it suddenly became (1 0), right? So the row space went from (0 1) to (1 0). 

So even a column swap can change the row space, okay? So the row space can get altered when 

you do column operations, okay? So these are things to remember. And now that we are talking 

about row operations and column operations, you can take a matrix, you can do invertible 



operations on the left, row operations to modify, make an upper triangular matrix. You can also 

do column swaps, you know, and change the way the matrix looks. And then you can also do row 

operations or in fact you can also do column operations if you like and make the matrix even 

simpler, okay?  
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So let us go back and see how we used elementary row operations to simplify how the matrix 

looked, okay? So let me recall that result and then now I will add some column operations and you 

will see you can simplify the whole matrix even more, okay? So let's see how that is done, okay? 

So this result helps you in doing that. You know I can do both row and column operations and not 

affect the rank. If I only want to not affect the rank, I can do both, okay? So let's see how that is 

done. So first let us recall what we had from elementary row operations. When you are only doing 

elementary row operations you could get these all zero columns, right? Zero pivot rows. And that 

can happen between two non-zero pivot columns. You will get a non-zero pivot column and then 

you may get a bunch of zero pivot rows and then you will get a non-zero pivot, you know? You 

can have a structure like this, okay? So we saw this structure before. This is possible, okay? And 

this was very useful. The structure itself was very useful. Now if I can do column operations, you 

see I can further simplify this, okay? You can get a very surprisingly simplified form. So it turns 

out when you do only row operations, you can only do so much to the matrix, right? So you can 

get it to the upper triangular form and then there can be, you know, values above the pivot and to 

the right of the pivot which could be non-zero. In fact you can do a little bit more and make even 

values above the pivots go to zero. But let’s not worry about that too much.  
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But really, you know upper triangular form, you can get with row operations quite easily, right? 

So now when you allow column operations you can see whatever you did with the rows you can 

do with the columns also, right? So you can make everything else zero, okay? So it's quite easy to 

see. So maybe if I go back to the previous slide, you can see how I can make that happen, right? 

See all these stars which are above and to the right of 1, right? So below you do not have anything. 

Above and right of 1 if I can do column operations, I can use, you know, this star and then this 1 I 

can do this column minus, you know, whatever that value is times this column. I will make that 

zero. So likewise I can make everything zero, using the first row you can make everything zero. 

And then you come to the second row you make these guys zero, right? So you can do this and 

then it is easy to, you know, sort of get rid of all these stars to the right also, okay? And then you 

will be left with these 0s in the middle and you can do column swaps. So you swap and make all 

the pivots come to the beginning. So that is what I have listed out here. What is it that you have to 

do? Do row operations and then swap the columns to make the pivots come together. And then 

after that simply use column operations to make everything zero, okay? So that will give you a 

form as simple as this, right? So very simple form. The identity matrix of size equal to the rank of 

𝐴 on the top left, everything else is 0, okay? So this also tells you from a high level if you have an 

𝑚 × 𝑛 matrix, arbitrary matrix and if you don't care about the actual row space and the column 

space, you only care about the dimension, you might as well pick a matrix like this, right? So you'll 

eventually get to a matrix like this. But usually of course we want to preserve the row space and 

column space because that's what makes the operators interesting. But still, you know, if you don't 



care, you can get down to as simple a form as this. Only the dimension matters in this echelon 

form, okay? So it's a good result to know.  
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Okay. So the other space which is involved in the matrix... Okay, so we have talked about the 

column space, we've talked about the row space, we've talked about the null space which is 

multiplying a vector on the right, okay? You know also that you can multiply with the row vector 

on the left, right? When you multiply with the row vector on the left, can you get zero, okay? Can 

you get a left null space for the matrix? So that is the last space that is left out so far in the matrix 

and let us talk about that, okay? So if you have an 𝑚 × 𝑛 matrix, one can define the left null space 

as the set of all vectors in 𝔽𝑚 such that 𝑥𝐴 = 0, okay? So that is called the left null of 𝐴 and it is 

also the null of 𝐴𝑇, right? So if you think about it, if you think of 𝐴𝑇 where the columns become 

the rows, this left null space of 𝐴 becomes the actual null space of 𝐴𝑇. So it's sort of meaningful 

to talk about the left null also. Now notice you can do fundamental theorem for 𝐴, fundamental 

theorem on 𝐴𝑇, right? So you will get 𝑛 equals column rank plus nullity, 𝑚 equals row rank plus 

left nullity, okay? So now you know that, you know row rank and column rank are the same. So 

you have this 𝑛 equals row rank plus nullity, right? So row and column rank are the same. So you 

have this nice little equation. So notice here. This particular equation is a bit interesting, okay? So 

all these results you can do with, you know, null space and left null space and all that. But notice 

row rank and column rank are the same. Nullity and left nullity are derived from the fundamental 

theorem. So depending on 𝑛 and 𝑚, these two will be different, okay? So these two need not be 

the same. Row rank and column rank are the same, so these two can, this 𝑛 and 𝑚 are different. 



Of course if 𝑛 and 𝑚 are the same, for square matrices, these two also become equal. But if it's not 

a square matrix, then these two can be different also. So something to note in mind, keep in mind.  
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But notice this equation. This equation is a little bit interesting particularly because of this fact, 

right? Both the row space, okay, whose dimension adds with the dimension of the null space to 

give you 𝑛, both the row space and null space are subspaces of 𝔽𝑛, okay? So you have 𝔽𝑛 and 

their dimensions add to 𝑛, okay? So you have two subspaces of a vector space of dimension 𝑛 and 

their dimensions are adding up to 𝑛, okay? So is there something interesting going on here? Is 

there a nice connection between, deeper connection between row space and null space? It turns 

out it's true. Maybe not in general but definitely for when the field is real numbers, it is very much 

true, okay? So it turns out row space and null space cannot have an intersection, okay? When the 

field is real numbers, okay? So this, when the field is real numbers, this is very important, if you 

relax that condition this will not be true anymore, okay? And for the real space, the proof is also 

very easy, okay? So how do you show that, you know, row space and null space have no 

intersection except for the trivial intersection? You assume that there is a vector which is in the 

row space of 𝐴, okay? And you sort of show, okay... So basically what am I going to assume here? 

So you assume that this 𝑣 is in the row space and it's also in the null space, let's say, right? I didn't 

put that down very clearly. Okay? So this 𝑣 is in the row space of 𝐴 and the null space of 𝐴, okay? 

If this result were to be true, I should eventually show 𝑣 =  0, right? How do I show 𝑣 = 0? If it 

is in the row space then there exists some vector 𝑥, okay, such that 𝑣 =  𝑥𝐴, okay? So that is quite 

easy to see. Now I can multiply this both sides with 𝑣𝑇. So notice what happens here. I will get 



𝑣𝑣𝑇. But it will become 𝑥𝐴𝑣𝑇. But since 𝑣 is also the null space, this will become equal to zero, 

okay? So you have 𝑣𝑣𝑇 = 0 and 𝑣 is real, okay? So what does this mean? Now this will mean you 

know 𝑣1
2  + ⋯ +  𝑣𝑛

2 =  0 and then 𝑣𝑖 ∈ ℝ, okay? So that implies 𝑣𝑖 = 0, right? So you cannot 

have anything else, okay? So of course even if this real is replaced by complex this result is not 

true, right? So if you got 𝑣𝑖
2, you know the sum of squares of a bunch of numbers, complex 

numbers can be equal to 0, okay? So this is not true even if this real is replaced with complex. But 

for real spaces this is true, okay? So you can do something slightly different with complex spaces. 

You can think about what's happening there, all that's very interesting, we’ll take it up later on. 
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So in general there seems to be some mysterious sort of thing going on with this 𝐴𝑇, what is this 

etc. I mean I deliberately introduced it at this point for you to think about it a little bit. We’ll later 

on come back and look at 𝐴𝑇 and this kind of a connection between row and null space, dig a little 

deeper here and get some more ideas in, later on in the second half of the course, okay? For now 

these are the results that one can derive just based on, you know, just the dimension of the row 

space by doing elementary operations and by looking at, you know, fundamental theorem of 𝐴 and 

𝐴𝑇 and connecting it, okay? So overall any matrix 𝐴, there are four fundamental subspaces that 

people associate with a matrix 𝐴, okay? So this is sort of important. If you want me to summarize 

this lecture, four fundamental subspaces - the column space, the null space, row space and left null 

space - they are all intimately connected. Particularly for the real number field they have some 

even deeper connections. Even in other things there are some connections that you can make later 

on, okay? So dimensions are connected by fundamental theorem. And also row rank and column 



rank are the same, okay? So these are all interesting connections that you have between these 

subspaces. And we’ll keep exploring the connections in the later part of the course. Thank you 

very much. 
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