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Hello and welcome to this lecture. In this lecture, we are going to study determinants. So in fact 

we'll do a very quick job of looking at determinants, they are not very crucial today to linear algebra 

as it was before. In fact many applications of determinants in numerical linear algebra, purely in 

the linear algebra part of it are not so popular anymore. So you don't need to introduce determinants 

early and do the theory with respect to that. However, determinants are very useful in other areas 

of mathematics. They are used quite often in other applications to capture a lot of properties of 

systems, so it's an important thing to know. So we'll quickly go through the properties of 

determinants and their connections to linear maps. Later on, we'll come back and revisit it and 

define them in another way and look at other properties, okay? So let us proceed.  
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So a quick recap. As usual, we are looking at vector spaces. We looked at, in the last few lectures 

we looked at linear equations, how to solve them and how there is this quotient with the null space 

which is very interesting to understand a linear map. And then we saw these four fundamental 



subspaces of a matrix, right? So column space, row space, null space, left null space. We looked 

at connections between all these spaces, you know? And we saw that column space and row space 

have the same dimension for a matrix. That was something, some sort of a special property. And 

then we saw these elementary row operations which give you a certain simple form, the row 

echelon form is very, very succinct. In fact, if you have an invertible matrix, invertible square 

matrix, if you do row reduction, you can get it down to an identity matrix, right? So that's also 

something that's possible. The form is very simple once you do a row reduction, okay? So I'll pick 

up from here and we'll introduce determinants. We'll see it in a slightly informal sort of manner, 

we won't be very rigorous, complete in our proofs and description. And that's more or less enough, 

the crucial properties which we will use later on will be more or less... This introduction is enough. 

So it's a quick lecture introducing determinants. Let us jump right into it.  

Okay. So for the purpose of introducing and defining determinants, I will use the following 

notation for a matrix. If I have an 𝑚 × 𝑛 matrix 𝐴, I will call each row as you know 𝑣1, 𝑣2 etc. and 

then I will put the semicolon to separate the rows. So if I say [𝑣1;  𝑣2;  𝑣3] so on, the first row is 

𝑣1, the second row is 𝑣2, like that, okay? So just to know, put a succinct notation for the matrix, I 

am using semicolon to separate the rows in the notation, okay? So just a quick notation. We will 

use this over and over again to describe determinants, okay? So most of you are familiar with the 

formula for determinant. I think, like I said, this is the second course you are doing in linear algebra 

so you must know determinants, this notion of minors, cofactors expansion along rows and 

columns, that is known to you. But I will sort of introduce determinants in a slightly different way, 

slightly more abstract way, if you will. Without actually defining it, I will define some of the 

defining properties of determinants. What are the properties the determinant has, okay? 

Determinant is a function, it is a function which takes as input a square matrix, 𝑛 × 𝑛 square matrix 

over some field and its output is a scalar value, okay? So it puts out a scalar value from the field. 

The most common field we will be looking at is the real numbers, of course. So if you take an 

𝑛 × 𝑛 real matrix, determinant will do something to the numbers in that matrix and produce a real 

number at the output, okay? So that is what determinant is. It has the following properties which 

we will assume that this function has, okay?  

So at this point, as far as this lecture is concerned, we may not even know if the determinant has a 

formula or not. But I do not care. Let us say it is some function which satisfies these properties. 

That is how I care about determinant. From your practice, you know that there is a function for 

determinant. But let us say for now you forget all that you learnt about determinants and somebody 

were to introduce determinants for the first time. I am going to introduce it like that. I am going to 

say determinant is some function from square matrices to the scalar field which satisfies the 

following properties. There are four properties that I’ll list down. First property is for the identity 

matrix, I should have a determinant of 1, okay? So that's the first property. The next one is row 

scaling. If I take a matrix and scale its row by 𝑐, I should get the determinant without the scaling. 

So hopefully you see this relationship. So I have the original matrix [𝑣1;  𝑣2;  … ; 𝑣𝑛]. I scale the 

jth row by 𝑐 and then I evaluate this function, determinant. What should I get? I should get 𝑐 times 



the determinant of the original matrix. So that is one of the properties that this function should 

have. Next it should have this linearity property with respect to the row. What is linearity? 

Supposing I write the jth row as 𝑣𝑗  + 𝑣𝑗
′. Two vectors that add to give the jth row. Then it should 

be equal to the determinant with 𝑣𝑗  alone in the jth row plus the determinant with 𝑣𝑗
′ alone in the 

second matrix. So I can make two matrices. All the other rows remain the same, okay? Nothing 

changes in the other rows, only in the jth row I have 𝑣𝑗  +  𝑣𝑗
′ as the original determinant that I 

want. I can equate it to the determinant without the 𝑣𝑗
′, just the 𝑣𝑗 , plus the determinant with only 

the 𝑣𝑗
′ without the vj, right? So that's the formula, that's the requirement of row linearity. There are 

other terms that people use for these things, I'm just saying... You know? Some people call it 

multilinearity, etc etc, okay? And then the last one is equal rows, which you know. If two rows are 

equal then the determinant should go to zero, okay? So these are the properties that one needs for 

a function. Like I said, assuming you do not know anything about determinants, you don't know 

the formula, you’ve forgotten the formula, so how do you define a determinant? Determinant is 

some function which satisfies these four properties, okay? So like I said at this point in the lecture, 

I haven't even told you such a function exists, okay? So we don't know if such a function exists or 

not. Why do you give such an intricate definition, what's the point of this and is there such a 

function? Like I said, once again I'll remind you from your practice and from your previous 

experience, you know that such a function exists. But let's say, even if you don't know, let's 

hypothesize that such a function exists. And then you'll see it's very useful, that you can do a lot 

of nice things with a function which has these properties, okay? 
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So what are those nice things we can do is what we're going to focus on and why this definition 

you'll see... I mean there's lots of ways to motivate it. One interesting way to motivate it is through 

this geometric connection, okay? So if you look at… We'll take small examples. So I'll start with 

a 2 × 2 example, probably the simplest example. Of course there is a 1 × 1 example which is too 

trivial. So we will leave that out. I will go to the 2 × 2 example. If you look at [𝑎 𝑏;  𝑐 𝑑], okay, it 

turns out you can define the determinant which is 𝑎𝑑 −  𝑏𝑐. You may be aware of the formula and 

that's equal to the area of the parallelogram formed by (𝑎, 𝑏) and (𝑐, 𝑑) okay? So if you want, you 

can draw this little picture here which might be interesting to you. So if you have (𝑎, 𝑏) here, let's 

say somewhere here. (𝑎, 𝑏). And then you have (𝑐, 𝑑) here. The parallelogram sort of defined by 

(𝑎, 𝑏) and (𝑐, 𝑑) would look something like this, isn't it? This point would be (𝑎 +  𝑐, 𝑏 +  𝑑), 

okay? So that is the sum of the two vectors and that forms the parallelogram, okay? Hopefully 

that's okay. That's okay. (𝑐, 𝑑), (𝑎, 𝑏). Then you get that, okay? So 𝑎 + 𝑐 and 𝑏 + 𝑑. So you, if you 

want to compute the area of this, okay, it is actually the absolute value of 𝑎𝑑 −  𝑏𝑐, okay? So you 

might have seen this. If you have not seen this, this is one of the motivations for why the 

determinant is sort of defined in this fashion, it's the area. You look at the rows, look at the 

parallelogram created by these rows and the area of that is the absolute value of the determinant. 

You can prove this 𝑎𝑑 −  𝑏𝑐. So you can make this, you know, you make a rectangle, you know, 

big rectangle and then subtract out all the other areas, you will get this, okay? So it's easy to show 

this. This is one motivation for the 2 × 2. There is something similar for 3 × 3, you know? 3 × 3 

also holds, it turns out it's true.  
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So if you go to 3 × 3 now, okay, you have this ABCDEFGHI. So if you compute the determinant 

from your formula, you will get this. So this is a valid formula for 3 × 3 and you can check all the 

four properties in case, you know, just to show you that this is a valid determinant. You can go 

check all your four properties, okay? Identity matrix will be 1, you know, row scaling will happen. 

Any two rows are equal, it will become zero and then the row linearity will also happen. This 

formula will, you know, all those formula properties will be true. You can check that. So it's a 

valid determinant, okay? And it's also the same determinant that you know from before. And it 

turns out it's also... If you like, take the absolute value of this guy, it's the volume of the cuboid 

formed by (𝑎, 𝑏, 𝑐), (𝑑, 𝑒, 𝑓) and (𝑔, ℎ, 𝑖) in ℝ3. So let's say I make 𝑣1 as ABC, 𝑣2 as DEF, and 𝑣3 

as GHI. So the cuboid is the set of all 𝑣... Or let me write like this. Set of all 𝑎1𝑣1  +  𝑎2𝑣2  +

 𝑎3𝑣3 , 𝑎𝑖 ∈ (0, 1), okay? So that's the cuboid. This is also the parallelogram, you can go back and 

see the parallelogram. Parallelogram was set of all points, see it's all linear combinations. But this 

𝑎𝑖 has to be between 0 and 1, okay? You are not allowed to let this 𝑎𝑖 go wherever it wants. It 

should be between 0 and 1. So if you make all possible combinations, you will get the cuboid, 

okay? So that's the definition for the cuboid.  
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You can also geometrically picture it, you know? You have 𝑎, 𝑏 and 𝑐, you know? Three 

different… I mean not 𝑎, 𝑏 and 𝑐, 𝑣1, 𝑣2 and 𝑣3. And you take all possible combinations, you get 

the whole cuboid, right? So it will be the proper cuboid that you can get. So more than a cuboid, 

maybe a better term is this parallelepiped. Parallelepiped, I think, it's probably a better term for 

this. But, you know, three dimensions cuboid is reasonable, you know what, you know what I 



mean when I say that. So the volume of this cuboid will be the determinant of 𝐴. So it's not really 

a proper cube, you know, I mean it's not, it's like a parallelogram, it doesn't have 90° and all that, 

so it's like a, some three-dimensional parallelogram extension, okay? So that's what it is. So you 

can see that. So that's why cuboid is maybe not a very good term. But you know what I mean. So 

you can sort of picture that this is a three-dimensional solid object, sort of parallelogram-ish 

extended to three dimensions. Its volume, if you compute the volume, is given by the determinant’s 

absolute value, okay? So this is a nice geometry connection and one can extend this to 𝑛 

dimensions also. If you do 𝑛 × 𝑛 determinant of 𝐴... I mean I haven't really talked much about it, 

but the volume of the 𝑛 dimensional parallelepiped formed by the rows satisfies all these defining 

properties. So if you imagine the parallelogram, right? So if you look at row scaling, what am I 

doing? I am keeping one vector the same, the other vector gets scaled by something. So clearly the 

area will also get scaled. Same thing with the cuboid, right? If you take the base, if you keep the 

base the same and you keep increasing the height alone, the volume will, you know, increase 

linearly. If you take two vectors and add them, you know, and you will get the volume of the first 

parallelogram and the area of the first parallelogram adding to the area of the second parallelogram, 

you know, all of these properties can be verified with the volume intuition. So those properties that 

we had in terms of linearity...  
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In fact, what about the third property? Two rows being the same? Supposing you want to define a 

cuboid where two rows are the same, then you don't really get a cuboid, right? You don't really get 

a volume, you'll only get a two dimensional figure. So its volume is zero, okay? So that also makes 



sense. In a parallelogram if you make the two lines meet, then your area is zero, okay? You don't 

have an area anymore. So same thing happens with this volume of the parallelepiped that you 

define with the rows of the matrix given to you. All those properties make sense from a geometric 

point of view. So that's the connection to why a determinant should exist. The volume of this 

parallelepiped is the determinant's absolute value. Of course there is a sign to worry about, let's 

not worry too much about it. There is some orientation involved in the sign, but this is the 

geometric intuition and connection in case you are wondering why these, all these properties are 

interesting. But for us, determinant is more interesting from the linear map perspective, right? So 

what does it say about the linear map, we are most interested in that, okay? So supposing you have 

a matrix 𝐴, square matrix 𝐴 and supposing I compute its determinant or the determinant function 

I want to use or figure out something, what will it say anything about the linear map, what kind of 

properties can I deduce from it, that’s most interesting to us in this course. And let’s focus on that 

in the remainder of the lecture, okay? So for that we will, there are further properties of the 

determinant. We will only use the four defining properties and manipulate them and then we'll get 

further more interesting properties.  
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So look at these properties. The next property is zero row, okay? Supposing one of the rows of the 

determinant is equal to all zeros, entirely zero, okay? Then it turns out determinant is 0. Why is 

that? So you have 𝐴... I'm sorry. You have a matrix 𝐴, let's say just for argument's sake the first 

row is 0, the next row and all is some 𝑣2 etc, okay? So like that, okay? So I am going to look at 

the matrix which is, you know, -1, you take -1 and multiply the first row with -1, okay? So row 1, 



so I do this here. row 1 into -1, okay? So if I do that, what do I get? I get the same matrix, right? 

Why is that? Because the first row is 0. If you multiply -1, you get the same matrix. But what does 

the property of determinant tell me? Determinant of 𝐴 here, property tells me minus determinant 

𝐴, right? Because if you multiply any row by a scalar 𝑐, the determinant should get multiplied by 

that value. But the two matrices are identical. When you have the zero row. So these two have to 

be equal. Which implies determinant of 𝐴 equals zero, okay? So the property that, you know, 

scaling of rows results in the scaling of the determinant enforces this result. If you have an all zero 

row in your matrix, that matrix determinant has to be 0, okay? So that is a property that one can 

quickly derive. That is the zero row property as I call it, okay?  
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So let us go to the next property. The next is this row operation, okay? So we saw this elementary 

row operation where you did something like this, right? You took 𝑟𝑜𝑤 1 and multiplied 𝑐 times 

𝑟𝑜𝑤 𝑗 and added it to 𝑟𝑜𝑤 1, right? So this is the operation 𝑣1  +  𝑐𝑣𝑗 , okay? Now what happens 

to the determinant when you do this, okay? That's the question that one can ask. So it turns out 

determinant does not change when you do an elementary row operation of this form 𝑣1  +  𝑐𝑣𝑗, 

okay? Of course there are other elementary row operations like, for instance, multiplying a row by 

𝑐. If you do that, determinant gets multiplied by 𝑐, okay? So this particular operation where you 

do one row plus 𝑐 times another row... I have put 𝑣1 here, nothing is sacred about 𝑣1, it could be 

𝑣𝑖, okay? You take the ith row and add 𝑐 times the jth row, okay? 𝑣𝑖  +  𝑐𝑣𝑗 also, the determinant 

does not change. It remains the same. When you do this row combination. Again, it's just a 

sequence of properties, right? So how do you prove this? This guy is the same as determinant of, 



you know, 𝑣1… I used first the addition property [𝑣1;  … 𝑣𝑗; … 𝑣𝑛] plus the linearity property, 

right? The row linearity property, and the scaling, okay? So then you will get 𝑐 times 𝑣𝑗 . Here the 

𝑐 will come out, 𝑐 determinant of [𝑣𝑗;  … 𝑣𝑗;  … ; 𝑣𝑛], right? So this is a property that you are able 

to use. Use the row linearity plus the scaling. Now here these two rows are the same, okay? They 

are the same. So if you have two rows same, you have that last property of the determinant. So this 

whole thing goes off to zero. So you see the determinant of this guy is the same as the determinant 

before the operation, okay? So this row operation does not change the determinant, okay? That's 

good to know.  

Okay. So from here one can extend to dependent rows, okay? If you have a determinant of a matrix 

and the rows or columns are linearly dependent, then the determinant is zero, okay? So forget 

about this “or columns” for a minute, we'll come back to that soon enough. We'll see why that is 

true. But let's first look at the rows, okay? If the rows are linearly dependent, the determinant ends 

up being zero, okay? This function which has the simple properties of, you know, row scaling, row 

linearity, two rows being equal is zero, determinant of identity is one, just those four properties 

make sure that if the rows of the matrix are linearly dependent, then the determinant will end up 

being zero. So how do you do it? It's not very hard, you use your linear dependence lemma. You 

know that 𝑣𝑗  is in the span of the previous 𝑣s and you put out a linear relationship. You replace 𝑣𝑗  

by this combination, okay? And then you evaluate this determinant. You will see that, you know, 

first of all this is a zero row, right? When you replace 𝑣𝑗  by this guy, you will get a zero row, okay? 

So that determinant will become zero and then when you expand it out like this, all the other guys 

will go to zero, only the 𝑣𝑗  will remain. And you will get this is equal to zero, okay? So I am not 

going into details of this proof. I think hopefully you can see that. So you take this matrix, replace 

𝑣𝑗  with this combination. But remember that combination is actually 0, okay? So on the left hand 

side you will get 0. 0 equals, you will start expanding with your addition formulation. In the 

addition formulation, only the first value will survive, only the 𝑣𝑗  the determinant will survive, 

everything else will become 0 because of the row being the same, two rows being the same. And 

then you will only get the determinant being equal to zero on the left hand side, okay? So that is a 

simple little method here to see that.  

So what about columns? Why do columns enter the picture? Because we know row rank and 

column rank are the same, if the columns are linearly dependent in a matrix, the rows are also 

linearly dependent, is that right? Is that right? In a square matrix that is true, right? If it is not a 

square matrix then you can have other possibilities. But in determinants, remember we are dealing 

only with square matrices, okay? So keep that in mind. Square matrices, whenever we talk of 

determinant, we are talking about square matrices. So in a square matrix, if the columns are linearly 

dependent, the rows have to be linearly dependent. Why? Because row rank and column rank are 

the same, okay? So if the columns are linearly dependent, then the column rank is less than 𝑛 

which means the row rank is also less than 𝑛. So if the row rank is less than n, then the rows are 

also linearly dependent, okay? So whether the columns are linearly dependent or the rows are 



linearly dependent, determinant will end up becoming zero, okay? So that's a nice, nice property 

to know.  
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And the final property is a row swap, okay? So we were doing these row swaps as part of the row 

operations, right? If two rows are interchanged, then it turns out the determinant gets multiplied 

by -1, okay? So how do you prove this? This might seem like a little bit difficult. But what you do 

is - you take the original matrix [𝑣1;  𝑣2;  … ; 𝑣𝑛], you look at this other determinant. What is this 

determinant? I look at [𝑣1  +  𝑣2;  𝑣1  +  𝑣2;  … ]. First two rows instead of being 𝑣1 and 𝑣2, I will 

replace them with 𝑣1  +  𝑣2 and 𝑣1  +  𝑣2 and look at the determinant of that, okay? Now use your 

row properties, okay? Row linearity properties, you will get four terms on the right hand side. So 

this determinant is equal to four terms on the right hand side. On the left hand side, this determinant 

itself is zero. Why? Because the two rows are identical, okay? On the right hand side, two of the 

rows, two of the determinants will be zero. Again because rows are identical. The two others will 

be [𝑣1;  𝑣2;  … ] and [𝑣2;  𝑣1;  … ]. The sum of those two determinants is zero which means 

determinant of [𝑣2;  𝑣1;  … ] equals minus determinant of [𝑣1;  𝑣2;  … ], okay? So that's the simple 

proof here. Once again I am skipping the detailed writing down of every step. But hopefully you 

can see where this comes from. So once again, I want to emphasize, we just defined the function 

determinant where I did not really fully specify what it was. I am just relying on your experience 

to know that such things exist. We motivated it with the geometry connection, but there were these 

four simple properties and those properties are helping us derive more interesting ones. Particularly 



the dependent rows is really interesting, right? So when the rank goes less than n, determinant goes 

to zero, okay? So that's a nice property to know.  

(Refer Slide Time: 25:20) 

 

Okay. So it turns out one can say a lot more about determinants, these elementary row operations 

are sort of very easily tied to determinants, okay? The first thing is - one can compute the 

determinant for the elementary row operators very easily, okay? So let me just show you the first 

one, okay? So if you look at the determinant of the first one, the row scaling by 𝑐, so what is the 

matrix corresponding to row scaling by 𝑐? Let's say, let me say the first row is scaled by 𝑐, 

everything else remains the same. So you get a diagonal matrix with 1 on all the other terms except 

for the first row where there is 𝑐, okay? Now the 𝑐 could be any other place also but let us say it is 

in the first place. Now this you see, you know. How do you get to this? You take the identity, okay, 

multiply row 1 by 𝑐, okay? So then what should happen? Here you have determinant equal to 1, 

here you have determinant equal to 𝑐 isn't it? It is 𝑐 times this determinant. When you multiply the 

row by 𝑐, so you see determinant of 𝐸 for any row scaling by 𝑐 is 𝑐 itself, okay? So that is very 

nice. What about row swap? Why does it become -1? So if you look at I again... Everything starts 

with I when you look at elementary row operations. What happens when you swap rows? You're 

going to swap the first and second row, let's say (0 1 0 . . . 0) and (1 0 0 . . . 0), everything else 

remains the same, right? Everything else is 1 on the diagonal, okay? How did I come to this? You 

exchange 𝑟𝑜𝑤 1 and 𝑟𝑜𝑤 2, okay? Any row swap is like that, right? When you want to swap two 

rows, the matrix corresponding to that, operator corresponding to that is simply the swap of 

identity, swap of the corresponding rows, okay? So here determinant is 1. From your row swap 



property, you know that the determinant here has to be -1, okay? Same thing with the last one, 

okay? When you do 𝑟𝑜𝑤 𝑖 equals 𝑟𝑜𝑤 𝑖 plus any 𝑐 times 𝑟𝑜𝑤 𝑗, we know the determinant does 

not change, okay? And the matrix corresponding to this operation is simply the same operation 

applied on I, okay? So you take I for which you know determinant. You apply the same operation, 

you will get that the determinant is 1, okay? So this is a simple way to compute the determinant 

for elementary row operators. For the elementary row operators, the three of them, okay, row 

scaling, row swap and row combination, right? 𝑟𝑜𝑤 𝑖 =  𝑟𝑜𝑤 𝑖 +  𝑐(𝑟𝑜𝑤 𝑗), we see that the 

determinants are easily computed because they operate on the identity matrix, okay? That's easy 

to write down.  

Now we can do more. It turns out when you do product of elementary row operators also, it is easy 

to characterize the determinant, okay? So look at this formula for instance, right? So why is this 

true, okay? So this you can verify, okay? What happens when you do 𝐸 times 𝐴 for each of these 

operators, okay? When you do 𝐸𝐴, if you do row scaling by 𝑐, right, if 𝐸 represents the row scaling 

by 𝑐, when you look at 𝐸𝐴… What is 𝐸𝐴? 𝐸𝐴 is basically that operation done on 𝐴, right? If you 

do row scaling by 𝑐, row 1 is multiplied by 𝑐, 𝐸𝐴 is simply that row scaling by 𝑐, okay? So you 

know the determinant of 𝐸𝐴 when you do row scaling by 𝑐 is going to be 𝑐 times determinant of 

𝐴, okay? Now but what is 𝑐? Now if 𝐸 represents row scaling by 𝑐, right, this 𝑐 is actually 

determinant of 𝐸, okay? So you will get det(𝐸𝐴) = det(𝐸) det(𝐴). Now what if 𝐸 is row swap? 

Then again you see determinant of 𝐸𝐴 becomes = −det (𝐴). So, -1 is again determinant of 𝐸. 

Now what if 𝐸 is just row combination? This 𝑟𝑜𝑤 𝑖 =  𝑟𝑜𝑤 𝑖 +  𝑐(𝑟𝑜𝑤 𝑗)? Again you see 

determinant of 𝐸 is 1 and det(𝐸𝐴) = det(𝐴). So just by looking at it case by case, you can 

conclude in general that when 𝐸 is an elementary row operator, det(𝐸𝐴) = det(𝐸) det(𝐴), okay? 

So that's a crucial result. It seems simple enough. But once you do this, you can start iterating on 

it, okay? You can do an induction on this result and quickly see if you have a product of several 

elementary row operators, okay? If you do a product of several elementary row operators again 

the determinant will multiply like this, okay? So determinant of a product of several elementary 

row operators times 𝐴 equals the product of the determinants of this 𝐸𝑖 and the determinant of 𝐴. 

You can do an induction argument here. It’s not very hard, right? If it’s true up to 𝑖, how do you 

show it for 𝑖 + 1? In 𝑖 + 1 you have only one row operator multiplying. When you have one row 

operator multiplying, already the result is true, right? So it is very easy to do an induction, it is a 

basic induction here. So you get this result, okay?  

So this it turns out is a very powerful result, okay? So why is this very powerful? Because we 

know elementary row operators can do wonders for your matrix, right? Elementary row operators 

we know can do wonders for your matrix. That we know, okay? So using the previous properties, 

we can now start really computing determinants for a whole bunch of matrices. The first matrix 

for which very easily you can compute determinant is a diagonal matrix. If you have a diagonal 

matrix [𝑑1 0 …  0; 0 𝑑2 0 … 0; 0 … 0 𝑑𝑛] then the determinant is simply the product of the diagonal 

elements, it's very easy to compute, you know? You just start with the identity matrix, do simple 

row multiplying multiplications you will get this, right? So you can do the, you know, row scaling 



by 𝑑1 to 𝑑𝑛 and this multiplies this... You start with the identity matrix. You know that this is true, 

it is very easy to do this.  
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For any non-invertible matrix, determinant will be zero, okay? This is easy again, right? So if the 

matrix is not invertible, then the columns are dependent, rows are dependent. If the rows are 

dependent, determinant becomes 0. It's easy to compute. Now if you have an invertible matrix, it 

turns out you can do row operations to reduce it to identity, okay? So this is an important result. 

Go back and think about how we did row operations. We did row operations earlier to reduce it to 

an upper triangular matrix, right? You know you can always reduce it to upper triangular. And 

remember this is an invertible matrix which means the rank is 𝑛. And you have 𝑛 × 𝑛, which 

means every step of the way you will find a non-zero pivot, okay? The rank does not reduce. So 

you will get the full thing and then you will end with an upper triangular matrix. How do you go 

from upper triangular to identity, right? So you can do the row operations again, right? So you can 

do the corresponding row operations from row one minus etc., you can clear out all the zeros, all 

the non-zeros on the top by row operations and you will get it to identity, okay? So this is an 

important result. So go back and check and convince yourself that this result is true, okay? So 

basically, you know, you go from, because it's invertible there are 𝑛 non-zero pivots, okay? And 

rank is full and you can reduce it to upper triangular and then further do row operations to reduce 

it to identity, okay? So this is very important, okay?  

So what are we saying here? So there exist elementary row operators 𝐸𝑖 such that the product of 

all these ∑𝐸𝑖𝐴 = 𝐼. So this is crucial. Once you get this, you can take determinants on both sides. 



When you take determinants on both sides, notice what happens. On the left hand side, you have 

this familiar form, it's just product of row operators times 𝐴. I know my determinants go inside, 

right? When my determinants go inside, what can happen, okay? Out of these 𝐸𝑖s some of them 

will be row swaps. So let's say 𝑛𝑠 is the number of row swaps that you did. What will happen to 

the determinant of a row swap? You will just get −1, right? So you get (−1)𝑛𝑠. Determinant of 𝐴 

will be there, you will get (−1)𝑛𝑠 because of that, okay? This comes from row swaps. I mean of 

course it’s on the left hand side but when you bring it to this side also it retains the same (−1)𝑛𝑠. 

What are these guys? These are the row scalings, okay? How many ever row scalings you had, 

whichever row you scaled, all those scalings will come into the denominator here, right? So, 

because all of them will have 𝑐𝑗 as the determinant. What about row combinations? Those things 

don't show up because you know that they don't change the determinant. And determinant of 𝐼 is 

just 1 so you just get this formula, okay? So your matrix is either invertible or not invertible. If it 

is not invertible then the determinant is zero. Straightforward, done. If it is invertible, you keep 

doing the elimination, find your pivots, you keep track of your row operators, you know how to 

compute determinant. It’s very easy, as simple as that, okay? So you just need to do elimination. 

You can compute determinant as well. And if it is invertible, it is, I mean you can see non-invertible 

case also when you find a zero pivot. Anyway it goes off to zero, okay? So that is the logic queue. 

So once again, using the simple properties of determinant we are able to easily compute it for any 

matrix that we want, okay? Not only this, you can do a lot more interesting things with these row 

operations and other things.  
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Here is another fantastic result that is very non-trivial and interesting for determinants. If you have 

two square matrices, determinant of the product of the two matrices is the product of the 

determinants. det(𝐴𝐵) = det(𝐴) det(𝐵). How do you prove this? First case you take is when 𝐴 

and 𝐵 are not invertible, okay? If 𝐴 and 𝐵 are not invertible, it turns out 𝐴𝐵 is also not invertible, 

okay? So I will leave this as an exercise for you, it's quite easy to prove, okay? You prove this, 

okay? If 𝐴 or 𝐵 is not invertible, 𝐴𝐵 will be non-invertible, okay? So it is quite easy to prove. You 

can use many methods. you can just look at the, find the range space or null space and show in 

either case… Null space will be non-trivial, so it will be non-invertible. So 𝐴𝐵 is also non-

invertible. So once 𝐴𝐵 is non-invertible, 𝐴 or 𝐵 is non-invertible, you see det(𝐴𝐵) = 0 and 

det(𝐴) det (𝐵) is also zero. So it’s, both of them are equal, okay? The zero case is taken care of.  
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Now when 𝐴, 𝐵 are invertible, when 𝐴, 𝐵 are invertible I know that there is a sequence of row 

operations which take 𝐴 to identity, sequence of row operations which take 𝐵 to identity, okay? 

Both of these are true, isn't it? So you can do a sequence of row operations take 𝐴 to identity, 

sequence of row operations take 𝐵 to identity. And notice what I can do here. If I take the operation 

sequence for 𝐴 and then put the operation sequence for 𝐵 to the left of it and look at this product 

with 𝐴𝐵, I get 𝐼, okay? So you can see this, you know, 𝐸 will first operate on 𝐴, you will get 𝐼 

here. And then 𝐹 will operate on 𝐵, you will get 𝐼 here. So this is like the inverse that you can do. 

So this is true, okay? When 𝐴 and 𝐵 are invertible. Then what do you do? Once you have this 

equation, okay? Once you have this equation, you are through, right? So you take determinants, 

okay? So let me write that down. So you can take determinants here and then take determinants 



here and take determinants here. You will see that det(𝐴) det (𝐵), when you multiply those two 

you get det (𝐴𝐵), okay? So it is quite an easy result that you can quickly do. So this product is 

what is most important. You simply take determinants on both sides, you will get… Because this 

is all elementary row operators, right? So we know elementary row operators, you can take the 

determinant inside and then you will get det(𝐴𝐵)  = det(𝐴) det (𝐵), okay? So it’s easy to do. I 

am not writing down the full steps here. So this is the crucial idea. Once you do this, you are done.  
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One of the nice corollaries of this result is the following. If 𝐴 is invertible, you know 𝐴𝐴−1 = 𝐼. 

So if you use the det(𝐴) det (𝐵), you get det(𝐴−1) = 1/ det(𝐴), okay? So it's a nice little formula. 

When you need determinants for the inverse, you don't have to compute the inverse and then use 

some crazy formula, you simply find the determinant and then take its inverse, you get the 

determinant of 𝐴−1, okay? So that's a nice thing to do. What about column operations and the 

transposing, okay? So we’ve been always talking about row operations, but column operations and 

row operations are very closely connected. If you see, if you look at the elementary row operator 

and look at what happens when you do column operations... So let's look at 𝐸, which is, you know, 

row scaling is very trivial, right? It's diagonal so whether you do columns or rows, it's the same. 

The matrix doesn't change at all, okay? What's interesting maybe is the, maybe row swap is 

interesting, I don't know. But you know, what's maybe more interesting is the, you know, the row 

combination. So let's take a 4 × 4 matrix and then maybe, you know, row three became some 𝑐 

times row one. So let's take this matrix for instance, okay? So this basically represents 𝑟𝑜𝑤 3 =

 𝑐(𝑟𝑜𝑤 1)  +  𝑟𝑜𝑤 3, right? So this is this matrix. If you look at the transpose of it, 𝐸𝑇, it basically 



represents, you know, the 𝑐 would go there, right? So you get [1 0 𝑐 0;  0 1 0 0;  0 0 1 0; 0 0 0 1] 

everything else remains the same. So this represents 𝑐𝑜𝑙 3 =  𝑐(𝑐𝑜𝑙 1)  +  𝑐𝑜𝑙 3. Remember when 

you do 𝐸𝐴, it is row operation on 𝐴. How do you do column operation on 𝐴? You have to do 𝐴𝐸𝑇, 

okay? 𝐴𝐸𝑇 is the corresponding column operation on 𝐴, okay? So this picture is good to keep in 

mind when you do, you know, when you do 𝑟𝑜𝑤 3 =  𝑟𝑜𝑤 3 +  𝑐(𝑟𝑜𝑤 1). You want to do the 

same thing for column, you take that 𝐸, do a transpose, multiply on the right, then you are doing 

the column operation with that, okay? So that is one thing. And also I think you can very quickly 

convince yourself. There are only three cases, each of them you calculate and you can convince 

yourself that determinant of 𝐸𝑇 is the same as determinant of 𝐸, okay? This is not very difficult to 

prove, okay? So the column operations also determinant can be computed quite easily.  
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And once you know that, you can quite quickly realize that this result is true. det(𝐴𝑇) = det (𝐴), 

okay? So proof is quite easy. If 𝐴 is non-invertible, then 𝐴𝑇 is also non-invertible. We have seen 

this proof, right? Column space, row space have the same dimension and determinant of 𝐴𝑇 and 

determinant of 𝐴 are both zero. If 𝐴 is invertible, then there is a sequence of row operations which 

take 𝐴 to 𝐼 and you can do a transpose now and you see there is a sequence of, you know column 

operations which took 𝐴𝑇 to 𝐼, okay? Now you take determinants, you will see that one equals 

determinant of 𝐴𝑇 times all these determinants. All these determinants are same as determinant of 

𝐴, so determinant of 𝐴𝑇 and determinant of 𝐴 are exactly the same, okay? You use this result. The 

determinant of 𝐸𝑖
𝑇 is the same as determinant of 𝐸𝑖, and then you use these two relationships, you 

will get the answer, okay? So these powerful properties the determinant has, you know, with 



respect to product, with respect to transpose, makes its calculation very easy and one can quickly 

do these things, okay?  
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Okay. So here's the last slide on determinants. Once again we did a very quick job of looking at 

determinants from a high level. Once again, I'll assume that you know quite a few things about 

determinants from before. These are the four crucial properties that we saw the determinant 

function satisfies, okay? So it turns out one can show the following three results, which I won't go 

into any detail in this class at least. There is exactly one function which satisfies all these 

properties. You cannot come up with more than one function which can satisfy all these four 

properties and that is the function that you've been studying all along as cofactor expansion along 

any row or column, right? So familiar cofactor expansion formula for determinant satisfies all 

these four properties and you can also show it as a unique function. There's no other function which 

can satisfy these four properties. Once you have these four properties, you know all the other 

properties come quite easily, right? So this is important. There's also a very interesting permutation 

formula for determinants. That also we will not cover in this class, you can go look it up and read 

more about it and it is also equivalent to the cofactor expansion. Has to be equivalent, right? There 

is only one function which satisfies these things and that is your familiar determinant function, 

okay? That's the end of this lecture. Thank you very much. 

 


