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Simplifying matrices of linear maps by choice of basis 

Okay, hello and welcome to this lecture. We're going to now talk about why change of basis or 

choice of bases is interesting for linear maps. It turns out the matrices representing linear maps 

change when the basis changes, okay? If you have a linear map given to you in some basis and it 

looks very complex, lot of entries, big matrix, maybe you can pick your basis in a clever fashion 

and get it to a very nice format, okay? So what is this nice matrix? Why are some matrices simpler 

than the others, let's talk about all that and what's possible when you change basis and what you 

can hope to achieve by changing basis for linear maps, let's look at that in this lecture.  

(Refer Slide Time: 01:34) 

 

A quick recap. The most important part is the last point here which is change of basis for a linear 

map. The best way to think of it is: you have the linear map defined in terms of the original basis... 

So remember all the time when even though we think of the linear map in an abstract way, in most 

problems the linear map is going to be anyway specified with respect to one basis, okay? So always 

your starting point is the matrix specified in one basis, okay? So think of it like that, okay? So you 

have a matrix specified in one basis. How do you change bases? You look at the change basis 



coordinate matrix, right? So there is a way to do the identity map from one input basis to another. 

You do that on the first, okay? You go from the new basis to the old basis, you hit it with the old 

matrix, you get the old basis answer, then you transform to the new basis, you do change of basis, 

change of basis both ways and you can tackle any change of base situation. Put the suitable 

matrices in and you will get your answer, okay? So usually if it's 𝑉 to 𝑊 and 𝑉 and 𝑊 are different, 

you think of different bases. But quite often when it's an operator, you want to have the same basis 

and then you will have 𝑆−1 and all that and interesting operations coming, okay? So let us look at 

all those possibilities and why the choice of basis and change of basis gives you nice 

simplifications for the linear map, okay?  

So first of all, what do we mean by a simple matrix? Why are some matrices simpler than the 

others? So if you think of 𝑛 × 𝑛 square matrices, all sorts of dimensions, you can have values all 

over the place, it can be quite complex in general, right? The simplest matrix you can think of is 

the identity matrix. Why? Because when it operates on any vector, it doesn't do anything, right? It 

gives you the same thing, okay? So you want to have a simple description to what happens to your 

input when this linear operator hits you, right? The identity is the simplest. Nothing happens, right? 

That's why it's simplest, okay? The next simplest presumably is diagonal matrix. Why is that? 

Because when, how do you describe what a diagonal matrix does to a vector? Each coordinate is 

scaled by the entry on the diagonal matrix, right? Corresponding entry on the diagonal matrix. So 

it's a very simple description for what happens to your input. So you can easily, you know, if in an 

actual system you can change the inputs, you know exactly what changing each input is going to 

do. You can easily predict, you can figure it out, okay? So that is very nice for diagonal matrices. 

So in general, the matrix becomes simpler as you have fewer and fewer non-zero elements in the 

off diagonal. Diagonal is very easy to describe. Anytime you have lots of non-zeros off diagonal, 

the matrix becomes more complicated to describe. Of course I mean you will take it with a pinch 

of salt. There are probably matrices with all entries non-zero but which are much simpler than 

having a few entries, you know? For instance, supposing you have a matrix with all ones, okay? 

So it's very easy to describe what the matrix does to the input, no? It just adds up everything and 

puts out the answer for every coordinate. It’s easy to describe. But still you know that's not the 

kind of example I'm looking at. I'm looking at a more complicated example when I say non-zero. 

So in general if you have many zeros then it is a good or simple matrix and maybe we have to aim 

for that. So maybe as you keep changing your basis you may cleverly do that so that you get to a 

form which is very nice for you, okay? So you remember when we did row operations, elementary 

row operations, column operations, we wanted to get to a very simple form, right? Again lots of 

zeros, it helps you deal with problems in a very nice way, okay? So what about 𝑚 × 𝑛 matrices? 

It's not too bad to extend it. So even if you have a non-square matrix, okay, even if you have a 

non-square matrix you can still think of the diagonal. So this is the main diagonal in a non-square 

matrix. Of course there will be many other diagonals of the same length but usually the first main 

diagonal is sort of thought of as a principal diagonal. So you want, you know, the main diagonal 

to have non-zero entries, maybe 1, you know or something like that. And then the other entries 

should all be 0 as much as possible, okay? So this is something that's nice to accomplish using 



change of basis. So let's see if this is possible, how much of this we can do. We already have this 

hint from this elementary row operations. So maybe it will help you. So let's see if all that is 

possible. But first we will look at it in a slightly abstract way, okay? So this is something that is 

easy to describe.  
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So you have a linear map 𝑇: 𝑉 → 𝑊, dimension of 𝑉 is 𝑛, dimension of 𝑊 is 𝑚. Let's begin with 

the basis for 𝑉 which I will construct in a slightly clever way, okay? So I will take the basis of 

𝑛𝑢𝑙𝑙 𝑇. First of all, I will take the rank to be 𝑟, okay? Since I am taking the rank to be 𝑟, the rank 

of, I mean the dimension of 𝑛𝑢𝑙𝑙 𝑇 is 𝑛 − 𝑟, okay? That is the fundamental theorem. So you have 

{𝑢1, … , 𝑢𝑛−𝑟} as the basis of 𝑛𝑢𝑙𝑙 𝑇. Then I will extend this basis to a basis for 𝑉. But I will do 

this little bit of non-standard thing. I'll put the extension vectors first, okay? There's a good reason 

why I want to do it. So I'll put 𝑣1, … , 𝑣𝑟 first and then 𝑢1, … , 𝑢𝑛−𝑟 next, okay? So I can always do 

this. This is, this will give me a basis for 𝑉. This will be the basis I pick. So notice once again what 

have I done. I find first the null space for 𝑇, okay? I mean this is not a very numerical procedure, 

but I am just talking about an abstract process here to tell you how to think of this, okay? So you 

find a basis for null and then you extend that to the basis for the vector space and put the extension 

vectors in the beginning. So that's what you do. You know the rank will be 𝑟. So the extension will 

have, you know, 𝑟 guys in it. And then 𝑢1, 𝑢2, … , 𝑢𝑛−𝑟. 𝑛 − 𝑟 is the dimension for the null space, 

okay? So this is how it will be. Now what about basis for 𝑊, okay? You know this from one of 

the theorems. I mean the theorems for the fundamental theorem in fact works like this, no? The 

proof works like this, you pick a basis for the range of 𝑇. How do you pick the basis for the range 



of 𝑇? You know that 𝑇(𝑣1), … , 𝑇(𝑣𝑟) will form a basis for the range of 𝑇, right? So this comes 

from the fundamental theorem, from proof of the fundamental theorem. So you take that and 

extend it to a basis for 𝑊, okay? So I will have 𝑇(𝑣1), … , 𝑇(𝑣𝑟) and then I will add some additional 

vectors 𝑤1, … , 𝑤𝑚−𝑟 so that the whole thing becomes a basis for 𝑊. I've taken this 𝑇(𝑣1), … , 𝑇(𝑣𝑟) 

and extended it to form a basis for 𝑊. That's what I did, okay?  
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So this is how I will pick my basis 𝐵𝑣 and basis 𝐵𝑤. These bases are very nice, you'll see what 

happens to the matrix shortly when you do this. But it's very nice. You can see why this is very 

nice. The reason is: if you look at the matrix of 𝑇 with respect to 𝐵𝑣, 𝐵𝑤, what should I do? I should 

make a bunch of columns... The first column should be 𝑇(𝑣1) represented in 𝐵𝑤, okay? I will come 

to that in a little while but the second one is 𝑇(𝑣2). Likewise the 𝑟th column is 𝑇(𝑣𝑟) and then I 

have 𝑇(𝑢1), … , 𝑇(𝑢𝑛−𝑟), okay? Now what happens to 𝑇(𝑢1), … , 𝑇(𝑢𝑛−𝑟)? They are all 0, right? 

Because those are from the null, so they'll all go to 0. So the last 𝑛 − 𝑟 columns will be all 0s here. 

What about the first 𝑟 columns? 𝑇(𝑣1) I have to represent it in this basis 𝐵𝑤. But that has 𝑇(𝑣1) 

directly in the first position, so it will be 1 followed by a bunch of zeros. What will be 𝑇(𝑣2)? It 

will be 0 1 followed by zeros remaining. Up to 𝑇(𝑣𝑟) you will get this Ir in the first top left part, 

okay? So this basis, this particular way of choosing the basis 𝐵𝑣 and 𝐵𝑤... By the way, it's not 

fixed, okay? So you can change any, I mean the basis for the null space can be different, the 

extension can be multiple extensions so you have so many different bases that give you this, 𝐵𝑣 

and 𝐵𝑤 which give you this kind of a matrix finally. So this is easily, as you can imagine, is a very 

simple matrix, okay? So the point of doing these kind of abstract studies is just to tell you what's 



possible. So you know that you can pick a basis for 𝑉 and 𝑊 so that any linear map 𝑇: 𝑉 → 𝑊 has 

this very very simple form [𝐼𝑟 0;  0 0], okay? So it was easy to see, it was sort of hidden in the 

fundamental theorem in some sense. So that's why it's called the fundamental theorem, right? So 

there is very little new that you can do outside of it. So this is sort of hidden there. You pick your 

bases smartly motivated by the fundamental theorem, you will get a really, really simple matrix, 

okay? So this is nice to know.  

Notice this even holds when 𝑊 equals 𝑉. Don't think it doesn't hold for operators, okay? Even for 

operators you can do this. You can pick a basis 𝐵𝑣 and a basis 𝐵𝑣’, okay? So it cannot be equal, 

that is not guaranteed here, right? You pick a basis 𝐵𝑣 and this 𝐵𝑤 will not be the same as 𝐵𝑣 just 

because 𝑊 became equal to 𝑉. The way you are choosing it, you won't get the same thing, okay? 

So if you are allowed to pick two different bases, then you can get this very, very nice simple form. 

In fact the simplest form that's possible you can easily get, okay? So this is sort of like, you know, 

you can think of it as the fundamental theorem of representation of linear maps by matrices, you 

know? You pick your bases, you are allowed to pick whatever basis you want, this is the only 

linear map you have to worry about. Isn’t it nice? Okay? So is this the end of everything? I mean 

we have nothing more to do. You've done, we've solved everything, right? But there is this problem 

with the basis 𝐵’ being different from basis 𝐵𝑣, okay? So that's not very desirable always. Why is 

that? Why is it not very desirable?  

But before that, before that, before I look at why that's not very desirable, so let's look at these 

elementary row column operations. Remember this [𝐼𝑟 0;  0 0] also came from elementary row 

column operations, right? Now it turns out these elementary row column operations give you a 

precise recipe to find the basis 𝐵𝑣 and 𝐵𝑤. So the previous slide also gave you some sort of a 

method. But that method is usually not very easy to implement. You have to find the null space, 

find a basis, find extension, maybe all that is not needed. Actually it's not needed. All you need to 

do is elementary row and column operations. You do that, you keep track of what matrices you 

had, you can directly find the 𝐵𝑣 and 𝐵𝑤 that gives you the simplest possible form, okay? Why is 

that? Take a look at this. We know that there exist elementary row operations, column operations 

𝐸𝑖, 𝐹𝑗 such that the product of 𝐸𝑖 on the left product of 𝐹𝑗 on the right with 𝐴 gives you the simplest 

form. Now what else do you know? If I define 𝑆𝑙 as the product of the row operation matrices, I 

get an 𝑚 × 𝑚 invertible matrix. I know this will be invertible. Similarly if I define my 𝑆𝑟 as the 

product of all the right, the column operation matrices, I will get an 𝑛 × 𝑛 invertible matrix, okay? 

So if you look at this, you know I have 𝑆𝑙, right? So this is 𝑆𝑙. This is 𝑆𝑙, this is 𝑆𝑟. So if I want to 

push it to the right, I will get 𝑆𝑙
−1, 𝑆𝑟

−1 on this side, right? So 𝐴 becomes 𝑆𝑙
−1, this very simple 

matrix 𝑆𝑟
−1, okay? So that is something nice and what happens when you change the basis? So this 

actually sort of represents a change of basis, you know? See whenever you do change of bases, 

you're going to multiply it like this, like some sort of similarity with, you know, this and that be 

not being equal. 𝑆𝑙 and 𝑆𝑟. So here is the basis that you pick for 𝔽𝑚 and 𝔽𝑛, okay? 𝑆𝑟
−1 is here on 

this side. So I will pick the basis for 𝔽𝑛 to be the columns of this 𝑆𝑟
−1, okay? Whatever 𝑆𝑟

−1 I 



computed here, that, the columns of that is the basis for 𝔽𝑛. And then the basis for 𝔽𝑚, the output 

basis will be the columns of 𝑆𝑙 itself, okay? If I do that, my linear map 𝑇 becomes in this basis, in 

this particular basis it simply becomes the simple form [𝐼𝑟 0;  0 0], okay? So think about why that 

is true. It is, you can see it. But in any case if you are allowed to pick an arbitrary basis for 𝔽𝑛 and 

an arbitrary basis for 𝔽𝑚 and these two need not be equal, then you can pick them through this 

elementary row and column operation so that your, you know your linear map gets represented by 

just the [𝐼𝑟 0;  0 0]. You do not have to do any null space basis extension and all that, just this 

linear elementary row column operation will give you what those bases have to be. In fact from 

here, you can also read off if you like the null space extension, range space and all of them, okay?  
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So this is sort of a summary now. So you see that any linear map has a very simple matrix 

representation on a suitable basis and at this point you have to really ask are we done. I mean, like, 

I mean how much simpler can we get than [𝐼𝑟 0;  0 0], what's the point in studying linear maps 

anything beyond this? Do we need to spend any more energy studying linear maps? Looks like it's 

very simple, right? But it turns out there is that little bit of problem with allowing, you know, 

different bases for 𝑉 and 𝑊. When you go to operators in particular, there is a lot of motivation to 

keep the bases same for input and output, okay? So if you have particularly operators, 𝑛 × 𝑛 

matrices, let's say rank is 𝑟. The transformation is from 𝔽𝑛 to 𝔽𝑛. Let's say in the standard basis 

you give a matrix. Usually this constraint becomes very important. You do not want one basis for 

the input, another basis for the output, okay? So in fact I want to find just one invertible matrix 𝑆 

such that 𝑆𝐴𝑆−1 under the similarity transform,  𝑆𝐴𝑆−1 I get a simple matrix. In the previous form 



that I did, I had 𝑆𝑙 and 𝑆𝑟, two different matrices. That's not allowed, I want the same matrix, okay? 

So this makes life a little bit more complicated. It's not as easy as just arbitrary elementary row 

and column operations, I have to make sure they are balanced in some way, right? Whatever I do 

on this side I have to sort of undo on this side, okay? If you do that it's not so easy, okay? It 

becomes a little bit more tricky. It's not that easy, okay?  
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So why would you want to do this? Why do you insist on the same basis? It seems like same vector 

space, same basis it's reasonable, it's fair. But more than that, more than that, there is a really 

important utility for using the same basis. Notice what happens. When you have an operator, it's 

from the same vector space to the other and usually people will keep applying the operator multiple 

times. So these kind of operations are very, very useful in practice 𝐴𝑣, you know, 

𝐴2𝑣, 𝐴3𝑣, … , 𝐴𝑛𝑣, and we just keep on repeating the operator multiple times on the same vector 𝑣. 

So now notice what happens when you do a similarity transform. If you went to another 

representation for 𝐴 keeping the basis for input and output the same, as you square, you get a very 

simple form, right? When you square it, this 𝑆 and the next 𝑆−1 will cancel, okay? (𝑆−1𝐴𝑆)2 will 

simply become 𝑆1𝐴2𝑆. It's just the same one basis transformation, and this 𝐴2 gets preserved. If 

you had 𝑆𝑙 and 𝑆𝑟 not being inverses of each other, you won't have this cancellation. So you will 

have a very different looking, you know, linear map when you square it and that's not very nice, 

okay? The squaring not maintaining the linear map is a property that comes only from the similarity 

transform, only when you keep the basis for input and output the same. If you change it, you won't 

preserve this, okay? So and this behavior, you know, well behaved, a good behavior when you 



repeatedly use the operator is very important in practice, okay? So this is the, sort of the central 

reason why we continue to study linear operators in the rest of this course.  
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The first four weeks we've seen quite a few topics covering the basics of linear maps. Up to now 

we have looked at very, very fundamental basics of linear maps and matrix representation and 

fundamental theorem. What null space is, what range space is, how to simplify the matrix 

representation etc. etc. we have seen so far. It's very nice. Now for the next quite a few weeks, we 

will study operators in this above scenario, okay? So how do you fix, how do you do similarity 

transformations, how do you fix an input and output basis, transform from one basis to the other, 

how do you get very simple, you know, forms for the matrix, what is possible? It turns out what 

we did before is not possible, you can do only slightly lesser and this also leads naturally to the 

study of very important concepts like eigenvectors, eigenspaces, what they all mean, okay? So this 

is sort of like a critical point for the course. End of week four. We are done with the foundational 

aspects of, you know, vector spaces, you know, linear maps and all that. We will start diving into 

eigenvalues and eigenvectors and eigenspaces from the next week onwards, okay? Thank you very 

much. Hope you're having fun. Hope you enjoy the rest of the course also. Thanks. 


