
Applied Linear Algebra

Prof. Andrew Thangaraj

Department of Electrical Engineering

Indian Institute of Technology, Madras

Week 05

Eigenvalues, Eigenvectors and Upper Triangularization

Hello and welcome to this lecture. We are now going to see this very interesting idea of

eigenvalues, eigenvectors and upper triangularization. Towards the end of last lecture we saw that

we may not always be able to get a diagonal matrix for a linear operator, there may be some

limitations because you may not have enough eigenvectors. So, but it turns out upper

triangularization is always possible. For any linear operator there is an upper triangular matrix. So

that is the sort of the main result we will see. Along the way, I will also point you out other

computational tools, numerical computational tools. In particular I will talk about SageMath. And

notebook that I sometimes use with SageMath and then Matlab also little bit towards the end. So

that is the agenda for this lecture. Let us get started.

(Refer Slide Time: 01:31)

So here is a quick overview. The last bullet probably is most important. Basis of eigenvectors

results in a diagonal matrix for the operator and one sufficient condition for having a basis of

eigenvectors is distinct eigenvalues. We will see that that is not the only, we saw already that that

is not the only way, there are other matrices for which may be diagonalizable, which may have a

basis of eigenvectors in spite of having repeated eigenvalues. We may not be able to completely

characterize those things in this lecture. We will study more as we go along. But let us look at

upper triangularization. This lecture is mostly about upper triangularization and that is possible for

any operator, okay? So let us see that. So the crucial idea is the connection between invariant

subspaces and matrices of operators. How do invariant subspaces affect the matrix of operators?

We saw that when there is an entire basis of eigenvectors, the matrix becomes diagonal. But

supposing you do not have that. You have just some invariant subspace, then what happens, okay?

(Refer Slide Time: 04:22)

So here is an example I have taken. You have an operator 𝑇 ∶ 𝑉 → 𝑉 and then there is an invariant

subspace for 𝑉, 𝑈(𝑉) is invariant under 𝑇 of course. When I say invariant subspace, I mean

invariant with respect to 𝑇. 𝑇 invariant subspace, okay? We know we can pick a subspace 𝑊 so

that 𝑉 is 𝑈 ⊕ 𝑊. We know that that's possible. We come up with the basis for 𝑉 which will first

have a basis for 𝑈 and then the basis for 𝑊, right? So that is possible. We can do that also, okay?

Because it is a direct sum. So now if you think of the matrix of the operator in this basis, you will

get something slightly interesting. You will start seeing some zeros. Why is that? Because you

know in this basis 𝑢1, 𝑢2, … , 𝑢𝑘, 𝑤1, 𝑤2, … , 𝑤𝑛−𝑘, if you want to find the matrix, the first column

is 𝑇𝑢1 expressed in terms of this basis, right? So 𝑇𝑢2 expressed in terms of this basis, so on you

go up to 𝑢𝑘. And then 𝑤1 to 𝑤𝑛−𝑘. I am not saying anything new here. So now let us closely look

at what happens because of the invariance of 𝑈. If you look at 𝑇𝑢𝑖, it will have coefficients from

𝑢1 through 𝑢𝑘, there will be some coefficients 𝑎1𝑖 multiplying 𝑢1, 𝑎𝑘𝑖 multiplying 𝑢𝑘, okay? You

could have. But because it is invariant, 𝑇𝑢𝑖 belongs to 𝑈, right? 𝑇𝑢𝑖 belongs to 𝑈. Since it belongs

to 𝑈, it cannot have anything from 𝑊, okay? Because of this direct sum property. So it is, all these

guys should be zero, okay? So these zeros have to show up for every 𝑢𝑖. Is that okay? So remember

once again. See I am going to write coordinates for 𝑇𝑢1 in terms of this basis. So in this matrix,

this first guy will be 𝑢1, second guy will be 𝑢2, 𝑢𝑘. And then 𝑤1 will come, 𝑤𝑛−𝑘 will be the last

row, okay? Imagine, right? So every row you can associate with one of these basis elements. So

that is the coordinate corresponding to 𝑢1 in 𝑇𝑢1, right? So that is how we write this matrix out.

So all these bottom 𝑛 − 𝑘 coordinates have to be zero in the first 𝑘 columns, okay? That is because

of the invariance of 𝑇. That is very nice, okay? So in invariant subspaces, if you pick the bases,

they help you pick a basis in which at least quite a few zeros are guaranteed, okay? And this is the

crucial idea and this was also used in eigenvectors and all that.

Here is the connection. I have written it down cleanly for you, right? So you have these as, which

give you, you know, the invariant part of the, you know, operator. And then you have a bunch of

zeros. After that you will have the 𝑇𝑤1, … , 𝑇𝑤𝑛−𝑘. I do not know what is going to happen there.

When you do 𝑇𝑤𝑛, it may have something in 𝑈, it may have something in 𝑊 also, right? 𝑇𝑤1,

okay, after I have transformed the 𝑊, basis of 𝑊 with 𝑇, it could have both components in 𝑈 and

𝑊 also, I do not know. This could be a full matrix. But here I will definitely have zeros, okay? So

that is the form for the matrix. Okay. If you assume that this vector space 𝑉 is over the complexes,

then I know that there is an eigenvalue, okay? So invariant subspace, this is for general invariant

subspace. Let's focus on eigenvalues, right? Eigenvalues we know they exist definitely if you have

complex fields. So let us say we have the complex field and there is an eigenvalue 𝜆. Now this

𝜆𝑣1, this 𝑣1 is a one dimensional, I mean… Span of 𝑣1 is a one dimensional invariant subspace of

𝑇, right? So that's this relationship. We know that eigenvalues, eigenvectors correspond to one

dimensional invariant subspaces, okay? So let us use this idea here, right? So you take the invariant

subspace’s basis 𝑣1 and then pick 𝑤1 through 𝑤𝑛−1 to extend it, right? So you know pick a 𝑊

which will, you know, give you a direct sum of 𝑉 and you get a basis there, okay? So now let us

say 𝑇𝑤𝑗, it will have something in 𝑣1 and it will have 𝑤1 through 𝑤𝑛−1 also. But what about 𝑇𝑣1?

It will only have 𝑣1, right? So 𝑇𝑣1 will only have 𝜆𝑣1 so the coordinates in this basis, right,

coordinates in this basis will simply be, you know, (𝜆, 0, 0, …), okay? Same idea. So you have 𝜆

followed by a bunch of zeros. But here I will have lots of non-zeros, right? So nothing one can do

about it. You will have lots of non-zeros, okay? So this is. I mean already is telling you how to do

zeros.

And let's attack this part separately, right? So we'll attack one by one. We have at least got a bunch

of zeros in the first column. The way we want, remember, I am going towards upper

triangularization. So this is a good step for me, okay? So let's see if we can do any further, okay?

So as I describe this procedure, I want you to remember another upper triangularization that we

did, okay? What is that? That is using elementary row operations, right? We were able to quickly

and very easily using elementary row operations do upper triangularization. So here we cannot

quite do that. When you do that then the basis changes, no? Input, output basis ends up changing,

I don't want to do that. So I have to only do this eigenvalue business, okay? And only do change

of basis. Every time I need to do a change of basis, I need to do a similarity transform, right?

𝑆−1𝐴𝑆 that's the only thing I'm allowed. And whenever I do this, find a basis, find an eigenvalue

and then do a change of basis, and... That's okay, change of basis is okay. Because I'm not

changing, I'm changing basis on both sides, okay? If I do elementary row operations, then I'm

changing bases only on one side and that is not, it’s not what we are working with currently, okay?

So this is interesting. But this process will be sort of like that, you know? You will go one after

the other, sort of like pivoting and all that. But we are using similarity transforms, finding

eigenvalues and doing things like that, okay?

(Refer Slide Time: 07:41)

Okay. So I promised I will show you a few other tools. And this is a tool which is a, it's a SageMath

notebook called CoCalc. It's, I mean it also offers free accounts. You can also get paid accounts if

you like. I use that sometimes when I want to use SageMath, okay? And this is syntax in SageMath.

SageMath will have its own syntax. See, the thing about all these tools is every one of them has its

own syntax, its own functions, they are all sort of similar, they will have the same sort of answers

at the end of course. But you should get to know the tool more and more. And once you know one

tool, usually, you know, other tools are also easy, okay? It's just the principles are the same, right?

So it's just the names end up changing, okay? So SageMath for instance, you can declare a matrix

like this. Now this is a very, very, very carefully curated matrix. It may not look like that to you,

it might look like I have numbers all over the place. But this is a matrix I have very specially

chosen, okay? So it is a very curated matrix. But, you know, you can also work with general

matrices, you know? Even in SageMath there is a random matrix function, you can generate

random matrices and work with that etc. and you can see how it works, right? So you can define a

matrix, put a semicolon. I have to put A for it to print, okay? SageMath works like that. So that it

prints. Otherwise you have to print it explicitly. You call that.

(Refer Slide Time: 08:18)

So this is my matrix. 5 × 5 matrix. In SageMath, A.eigenvalues() prints out all the eigenvalues.

And you see eigenvalues are 55, 55, 55, 55, 55. This wouldn't have happened by magic, right? If I

were to put random numbers here, it is very unlikely you will get 55, 55, …, okay? So this is again

just an example to show you, right? If I put 55 on the diagonals and it’s a diagonal matrix you will

immediately believe me, that all the eigenvalues are 55. But here is a matrix which looks so

different from the diagonal 55, right? All over the place there are numbers. But its eigenvalues are

just 55, 55, …, okay? That's interesting. And then there is this, right, business that you have to do

in SageMath, right? So if you... This command A dot, notice the structure, right? It thinks of A as

some object and it puts methods on the objects. For those of you who have a background in

computer science you'll see what I'm talking about. So it's sort of an object oriented sort of thing,

okay? So it's a bit different. So this method, eigenmatrix_right, and then, you know, [1]. I mean,

why [1]? Because eigenmatrix_right actually returns what python calls a tuple. I am interested in

the second thing in the tuple. So that's [1]. And that's this matrix. So notice what has happened.

There's only one eigenvector, okay? There are five eigenvalues, five repeated eigenvalues but there

is only one eigenvector. Remember zero and all is not eigenvector, right? So there is only one

eigenvector and it looks very simple, right? (1 − 4 7 8 − 6), okay? So there’s one eigenvector.

But I know there will be one eigenvector, right? Any matrix, I mean complex, okay? These are

numbers. I know eventually I can go to complex numbers. So I will have one eigenvector, that is

guaranteed, okay?

Once I have this eigenvector, what is it that I can do? I can make a change of basis. How do I

choose, do a change of basis? I have to come up with this matrix 𝑆 where every column is my

basis, the new basis I want to go to. I have my first vector which is the eigenvector, okay? (1 −

4 7 8 − 6). How do I pick the other ones? I simply extend, okay? I know how to extend, right? I

just pick the standard basis (0 1 0 0 0), (0 0 1 …) I extend like this, okay? So this column_matrix

is a construction in SageMath. It just lets you define one column at a time and put it all in one line,

it's a simple way to construct a matrix. Again you see this is my S. I've prepared my basis

transformation matrix. Once I do that, I have to implement my basis transformation and that is

what I have done here. Again, there is this method called inverse. So if you do S.inverse(), you

can see. I mean, those of you who have experience calling these methods you will see that open

bracket close bracket clearly tells me there is a function here. So S.inverse() computes the inverse,

multiplied by A, multiplied by S, you will get this matrix. And lo and behold, you know what's

going to happen, right? So the first one was an eigenvector. So I got the first column 55, bunch

followed by zeros. Remaining I do not know what it is, right? So it is all over the place. I get all

sorts of entries, okay? So this shows you how this worked, okay?

(Refer Slide Time: 13:50)

All right. So it turns out what we did for the first column we can continue, okay? I am going to

come back to this sheet and show you and I have actually continued that. But let me first write

down or show you, describe to you the principle behind how to continue this, you know,

transformation beyond the first column, go to the second column, get a bunch of zeros there etc.

Let's look at that next. Okay? So this is how you proceed towards upper triangularization. So we

saw before that there was this first column which is 𝜆... See remember, I have come to this state,

right? I have come to my matrix being, you know, (𝜆 0 0 . .) and then there was this

(𝑏01, … , 𝑏0,𝑛−1) and then (𝑏11, … , 𝑏1,𝑛−1), …, (𝑏𝑛−1,1, … 𝑏𝑛−1,𝑛−1). So this is my matrix, right?

Okay. So I am going to sort of split this like this, okay? So this corresponds to 𝑣1 and these guys

are all 𝑤1 to 𝑤𝑛−1. So I am thinking of this matrix like this. I am taking the top part, okay, 𝑏0𝑗 to

𝑏0,𝑛−1, this is a matrix, no? 1 × (𝑛 − 1) matrix. I am going to think of this matrix as representing

some operator 𝑇0 let us say from 𝑊 to 𝑠𝑝𝑎𝑛(𝑣1), okay? In the basis 𝑤1 through 𝑤𝑛−1. I can do

that, right? So it is not too bad. It is just a matrix. So in a subspace of dimension, it can take a

subspace of dimension 𝑛 − 1 to a subspace of dimension 1. It’s perfectly valid. Same thing I will

do with this other square part also, okay. It’s (𝑛 − 1) × (𝑛 − 1). So I will think of it as representing

a map 𝑇1: 𝑊 → 𝑊 in that same basis, okay? So this is just a comfortable thing for me to do. Now

what it lets me do is the following, okay? Notice what has happened. If I take any vector 𝑣 in 𝑉,

that 𝑣 can be written as 𝑣1 + 𝑤′ where this 𝑤’ ∈ 𝑊, okay? So this we know because, you know,

anyway these two are a direct sum so I should be able to do this, okay? So I can write like this.

Now 𝑇𝑣 is 𝑇𝑣1, that is 𝜆𝑣1 plus 𝑇𝑤’. Now this 𝑇𝑤’ one can write as 𝑇0𝑤’ plus 𝑇1𝑤’. You can see

that that is what, that's what really happens here when I write 𝑇𝑣. I have 𝑇0𝑣 happening on top

taking me to the 𝑠𝑝𝑎𝑛{𝑣1} and then this 𝑇1 happening below which takes me to 𝑊. And these

things, these two will add finally, right? So coordinates are going to add. So you have 𝑇0𝑤’ plus

𝑇1𝑤’, okay? Now what is 𝑇0𝑤’? It took me to the 𝑠𝑝𝑎𝑛{𝑣1}. I don't know what it is, it will be some

coefficient dependent on 𝑤’. But it will combine with the first term, it will give me the 𝑣1, okay?

And then I will be just left with 𝑇1𝑤’. So this 𝑇(𝑣) can be written as something into 𝑣1 plus 𝑇1𝑤’.

So that is the crucial part. So you take 𝑣, you split it into something in 𝑣1 and 𝑤’. 𝑇𝑣 also. This 𝑐1

will transform into something in 𝑣1 plus 𝑇1𝑤’, okay? These are all linear transforms. You can see

what I have done here. It’s not something very fancy, just basic arithmetic and carefully written

down, observing what is going on, okay? So this is sort of like quotienting an operator. Your book

talks about it, I am not using that language, I am just briefly mentioning it for those who are

interested. But this is just easy enough to describe in basic terms.

So what I can do with 𝑇1 is: since I am in the complex field, 𝑇1 will also have an eigenvalue, okay?

That’s what’s very important. So 𝑇1 will have an eigenvalue, okay, at least one eigenvalue is

guaranteed, okay? Of course if you use determinants etc. you can do more things, but let us say

we have one eigenvalue and that eigenvalue I am letting it to be 𝜆1 , okay? 𝜆1 is that eigenvalue

and there will be an eigenvector 𝑤 corresponding to it, okay? So there will be a 𝑤 such that 𝑇1𝑤

becomes 𝜆1𝑤, okay? So this is always true for any operator. So notice what is the change of basis

that I am going to do now. See, previously I was in standard basis, some basis. I went to this basis

{𝑣1, 𝑤1, … , 𝑤𝑛−1), okay? So this is, yeah, so maybe from, okay this is okay, but I mean I do not

need to go from here to here. Basically I need to change bases to this guy, okay? Forget about this

from, it’s not so crucial, okay? So you can think of it like that. But it's not so crucial actually. In

my opinion you can forget about it. You change the basis for 𝑇 to this guy, okay?

{𝑣1, 𝑤, 𝑤1
′ , … , 𝑤𝑛−2

′). What are these things? See, 𝑣1 is the eigenvector for 𝑇 itself, the one

eigenvector I found, okay? What is 𝑤? 𝑤 is the eigenvector for 𝑇1, okay? I found an eigenvalue

for 𝑇1 and its eigenvector is 𝑤. I take 𝑣1, I take 𝑤 and then I expand to the basis for the whole

vector space 𝑉, okay? What will happen if I do that? You can go back and look at what has

happened, okay? If this 𝑤’ were to be an eigenvector, 𝑇1𝑤’ will simply be 𝜆1𝑤’, okay? So you will

get a form like this. So that is what is very important. So 𝑇𝑣1, so in this basis 𝑇𝑣1 becomes 𝜆𝑣1.

What will be 𝑇𝑤? Remember 𝑇𝑤, 𝑤 is an eigenvector, 𝑇𝑤 will be something into, something into

𝑣1, I do not know what that is, plus I will have a 𝑇1𝑤. And what is 𝑇1𝑤? 𝜆1𝑤, okay? So this guy

simply becomes 𝜆1𝑤. So I will have something here corresponding to this term, okay? I do not

know what that is, but the second term has to be 𝜆 and all these guys have to be 0 because it's an

eigenvalue. So I have got my bunch of 0s here. So notice what I have done. I did it for 𝑇. I took

care of the first column and then I shifted down, pivoted down into the bottom (𝑛 − 1) × (𝑛 − 1)

part. And then applied the same idea again. I know I will get something on the top, I do not care,

forget about it, but on the bottom I will get 𝜆1 followed by zeros, okay? And what you did here,

you can continue over and over and over again. And you will end up in an upper triangular form,

okay? So that is the crux of the upper triangularization idea, okay?

(Refer Slide Time: 18:16)

So hopefully that was clean enough. think about what I have done. So just exactly like you did

elementary row operations, went from pivot to pivot, we are also doing that here except that in

every stage I am finding the eigenvector, okay? So let me go back here to the sheet that I had. And

we had done it for the first column, right? We got 55, bunch of zeros. Now let us move down to

the next one, okay? So now in SageMath this notation A1[1:, 1:] will give me the bottom 4 × 4

matrix. One onwards, one onwards. The coordinates start from zero in SageMath, so one onwards

for the x coordinate, one onwards for the y coordinate. So for the rows and columns. So you get

this bottom 4 × 4. Its eigenvalues you see remarkably it's 55, 55, 55, 55 okay? So it's not very

surprising because you know why it should work out like that, okay? And then if you look at the

eigenvector matrix again, I have one eigenvector. (1 − 3 − 3 2), okay? So now I will take this

and make a change of basis for my A, okay? So notice what I have done here. I am creating an S1

which is the new basis I go to. The first column (1 − 4 7 8 − 6), that is the original eigenvector

that I had for the whole thing. The next one you see what I have done. I put (1 − 3 − 3 2). Here

I put zero. You can actually put what you like, but anyway let us say zero is good because it ensures

linear independence and all that. And then I can extend, okay? I’m extending it to the basis for the

whole vector space here, okay? And then I do just 𝑆1
−1𝐴𝑆1 and notice what has happened. I have

got my 55 here and below that is all zeros, okay? Is that clear?

(Refer Slide Time: 21:16)

Now I repeat, okay, so I have come pivoted down to here, there is no problem with the pivot being

0 here, right? So because this is not like an elementary row operation. I have to take this matrix

which is A2[2:, 2:]. That is that matrix. You can see the eigenvalues 55, 55, 55. And then you can

find its eigenvector. It’s (1, 1, −1). And then I form my change of bases which is (1 − 4 7 8 −

6), (0, 1, −3, −3, 2) and then (0, 0, 1, 1, −1) and then I have the usual extension. And then I get

S2. I get this. Again, I keep repeating, okay? Just the extension here you have to pay attention to.

So here you got eigenvector 0, 1, so you got the 0, 1. The next extension cannot be 0, 0 it should

be (0 0 0 1 0), okay? So just make sure the extension you pay attention to when you do this, when

you construct this. S3, you will get the S3. Lo and behold, finally got an upper triangular matrix,

okay? So if you keep repeating this operation over and over again, you will end up in an upper

triangular matrix. So I found one similarity transform S3 which when acting on A, you know,

𝑆3
−1𝐴𝑆3 gave me an upper triangular matrix. So this is the upper triangular matrix which is

equivalent to that other matrix, okay? So hopefully this SageMath... Once again you can click on

this link, okay? It will give you a way to download the CoCalc notebook and you can open it and

see it.

(Refer Slide Time: 26:21)

All right. So we saw the upper triangularization. So let's state it formally, right? Every linear

operator over complex, okay, complex is needed because we need eigenvalues. It is not complex,

you do not know if eigenvalues exist. Has an upper triangular matrix representation, okay? So the

proof is to simply continue the previous process one eigenvalue at a time. I showed you how the

diagonal occurs, how the zeros occur below the diagonal and you get an upper triangular matrix,

okay? All eigenvalues are on the diagonal in the upper triangular matrix representation, that is very

clear, okay? Algebraic multiplicity of eigenvalues, number of times it appears on the diagonal,

okay? That we know. We know the geometric multiplicity now has to be less than or equal to

algebraic multiplicity. Why is that? You take an upper triangular matrix of 𝑇, okay? And then if

you look at algebraic multiplicity of eigenvalue 𝜆, number of times 𝜆 appears on the diagonal,

right? So you take... Okay, so just to proceed here, we finished with upper triangularization, we

know what upper triangularization is. Now we are going to proceed and look at diagonalization.

When will that upper triangularization become diagonalization, that is the sort of thing that we are

going towards, okay? So for that, this algebraic multiplicity, geometric multiplicity and all of them

are very important, okay? So once you get an upper triangular form, you will see proving all these

things will become very easy, okay?

So how am I defining algebraic multiplicity? We defined it before also. How many times the

eigenvalue repeats. Once you get an upper triangular matrix, the values on the diagonal are the

eigenvalues, so you can easily find the multiplicity, you can define them, okay? Now what is

geometric multiplicity? You might remember it is the, yeah, so it is basically... Let me just remind

you what geometric multiplicity is, okay? So this geometric multiplicity is this number of linearly

dependent eigenvectors, right? So in other words, it’s dimension of 𝑛𝑢𝑙𝑙(𝑇 − 𝜆𝑖𝐼), okay? So this

is what it is. Geometric multiplicity, okay? So it turns out once you come up with the upper

triangular matrix representation, it's easy to show geometric multiplicity has to be less than or

equal to algebraic multiplicity, okay? Why is that? See, what is algebraic multiplicity? For

simplicity, I will take the 𝜆s to be on top and below you have zeros and then you have a bunch of

stars, right? So I know, I do not know what is going to happen here. I do not know what is going

to happen here. But I have 𝜆s here, okay? How many 𝜆𝑠 do I have here? That is equal to the

algebraic multiplicity of 𝜆. How many ever times it appears, it appears. Now when I do (𝐴 − 𝜆𝐼),

what is going to happen? All these guys will become 0, okay? They will become zero when you

do (𝐴 − 𝜆𝐼), okay? So when they become zero, you can clearly see there will be a linear

dependence on this side, right? So once they become zero, you have a linear dependence showing

up, okay? So you can see rank of (𝐴 − 𝜆𝐼), the rank becomes greater than or equal to... Did I get

that right? Yeah. So greater than or equal to 𝑛 minus AM of 𝜆, okay? See when you have this 𝜆s

subtracting, you will get a bunch of zeros here. So you have here 𝑛 minus AM of 𝜆, okay? That

many rows and the rank has to be at least that, okay? Even from here, depending on these elements

you may get some rank, additional rank may happen. But the zeros have been knocked out so you

do not know if they will contribute to the rank. But the rank of this (𝐴 − 𝜆𝐼) has to be at least 𝑛

minus whatever you knocked out here, okay? Now that tells you that, you know, this is true, right?

So why is that? So because 𝑛 minus rank of (𝐴 − 𝜆𝐼), okay, maybe I should write that down here.

So 𝑛 minus rank of (𝐴 − 𝜆𝐼) is less than or equal to algebraic multiplicity of 𝜆. And what is 𝑛

minus rank? That is this guy, right? Dimension of 𝑛𝑢𝑙𝑙(𝑇 − 𝜆𝐼), okay? So geometric multiplicity

becomes less than or equal to algebraic multiplicity, okay? So notice how the, you know, the

triangular matrix really simplified this for you, okay? So if this were not a triangular matrix, then

just because you knocked out something on the diagonal, you do not know what happens to the

rank. But below that zero is there and here all these guys are non-zero. So you know that the rank

is at least this much, okay? So that's what's very useful in this result. So you can prove some nice

results on geometric and algebraic multiplicity, okay? So this is useful. You will see this will play

a nice role in the diagonalization.

So now let us define something called an eigenspace and then connect it up with diagonalization.

So we've been talking about this 𝑛𝑢𝑙𝑙 (𝑇 − 𝜆𝐼), (𝑇 − 𝜆𝐼). Every time you have a 𝜆, eigenvalue

𝜆, this 𝑛𝑢𝑙𝑙(𝑇 − 𝜆𝐼) has all the eigenvectors, right? So it's very natural to define it as the

eigenspace. So this eigenspace is like the invariant subspace corresponding to the eigenvalue 𝜆.

And that's 𝑛𝑢𝑙𝑙(𝑇 − 𝜆𝐼), okay? So that has a special notation we will call it 𝐸(𝜆, 𝑇). So basically

eigenspace is the set of all eigenvectors along with the zero guy also. So we see the geometric

multiplicity is nothing but the dimension of the eigenspace. We have shown that it is less than or

equal to the algebraic multiplicity, okay? So also notice dimension of this guy, this is geometric

multiplicity, is the number of the linearly independent eigenvectors. Here is a very interesting

result. Any two eigenspaces can only trivially intersect. Why is that? Because you know, if they

have distinct eigenvalues, right, when they have distinct eigenvalues, then they can only intersect

trivially because eigenvectors corresponding to distinct eigenvalues are linearly independent,

okay? So you cannot have a non-trivial intersection there. And that would violate the linear

independence of eigenvectors, okay? So that’s nice to see, okay? So let us say you have a linear

operator 𝑇 and it has 𝑚 distinct eigenvalues 𝜆1 to 𝜆𝑚, okay? The corresponding eigenspaces let us

say are 𝐸(𝜆1) to 𝐸(𝜆𝑚), okay? So I am looking at an operator, it has a bunch of eigenvalues, some

of them may be repeated. Maybe there are m of them, each eigenvalue will correspond to an

eigenspace.

Now we can give a partial answer to sort of, I mean sort of an interesting answer to, not actually

partial answer, so good answer to: when is a linear map diagonalizable. It turns out a linear map is

diagonalizable if and only if these conditions are true. The geometric multiplicity for every

eigenvalue should be equal to its algebraic multiplicity, okay? If an eigenvalue is repeated so many

times, there should be that many linearly independent eigenvectors. This is sort of like if and only

if. This is not going to happen if any eigenvector is missing, right? If you have, it occurs many

more times algebraically or on the diagonal of the upper triangular matrix but it does not give you

enough eigenvectors, then you cannot diagonalize that operator, okay? There is no basis on which

that operator will become diagonal. We haven't quite proved that fully in some sense. In this class

I am not intending to. The textbook has a full proof, you can go take a look. But you can sort of

intuitively see why this should be true, okay? So 𝜆 appears so many times and the number of times,

number of linearly independent eigenvectors is not enough, then you are not going to be really be

able to, you know, find all these one dimensional invariant subspaces, right? Which will all add

up to the whole 𝑉, okay? You can notice here that when a linear map is diagonalizable, then the

vector space becomes the direct sum of all the eigenspaces, okay? So that's what’s, that's central

to making this happen, okay? So you have to have the geometric multiplicity being equal to

algebraic multiplicity. And the vector space should be the direct sum of all these things.

So notice what will happen. The algebraic multiplicities will add up to 𝑛, right? They are on the

diagonal. All the eigenvalues are on the, down the diagonal, so you add up the algebraic

multiplicities you will get 𝑛. Now geometric multiplicity, if it is equal to that, some of the

geometric multiplicities will also be 𝑛. And these eigenspaces do not intersect non-trivially, right?

So they trivially intersect. So the direct sum of eigenspaces gives you 𝑉, okay? So this is a very

nice picture to remember, okay? So when is a linear operator diagonalizable? There should be

eigenspaces whose direct sum becomes equal to the entire vector space. In that case the operator

is diagonalizable, otherwise it is not, okay? Another way of putting it is: geometric multiplicity

should be equal to algebraic multiplicity for every eigenvalue, then it is diagonalizable, okay? So

this sort of completes the picture of diagonalizable. You might naturally ask: what if it is not

diagonalizable? What is the simplest form we can get? Maybe we will get to it later in the class if

there is time, okay? But for now we will stop here. This is a good place to stop. So in general any

operator you can upper triangularize there is no problem, okay? You will have an upper triangular

representation. When will it be diagonalizable? If its geometric multiplicity is equal to the

algebraic multiplicity, okay? So that sort of concludes this whole study of eigenspaces, eigenvalues

from a diagonalization and upper triangularization point of view. We will study it further using

more interesting properties etc. But for now we'll stop here.

(Refer Slide Time: 31:06)

But before I finish this lecture, let me show you the last computational tool that I promised to show

you which is Matlab. A very basic few commands. Matlab is also very easy to use. You have this

randi() command which will generate a random matrix for you. I put a 8x8 matrix. And there is

this eig() command which will give you, you know, the eigenvalues along the matrix, diagonals

of a matrix, that is why I put a diagonal. And then the eigenvectors in v. So you can see this matrix

is a random sort of matrix and it has complex eigenvalues. Notice it has distinct eigenvalues. How

many distinct eigenvalues? There are 1, 2, 3, 4, 5, 6, 7, 8. 8 distinct eigenvalues are there. So it is

diagonalizable. I know that for sure. But it also has some complex eigenvalues. Notice complex

conjugate eigenvalues are there, right? So it will be complex conjugate, no? You can also show

that it will be complex conjugate eigenvalues. So that is easy to see because this is real, right? So

𝑑𝑒𝑡(𝐴 − 𝜆𝐼) will be a real matrix, real polynomial. So it will have complex conjugate eigenvalues.

So you can see complex eigenvalues showing up, okay? So in practice complex eigenvalues are

very common, okay? So also notice another interesting thing. This one eigenvalue which seems to

be relatively very large and all the other guys are sort of, you know, slightly small, that's also

something interesting, okay? Now here are the eigenvectors. So you see the complex eigenvalues

correspond to complex eigenvectors. The first one is a real eigenvalue, 27.20 something. And that

corresponds to a real eigenvector, okay? So you can see that here. And the other eigenvalues, the

complex eigenvalues correspond to a complex eigenvector, okay? And then likewise you will have

other things. And if I do, you know, v inverse*A*v I get a diagonal matrix with the eigenvalues

on the diagonal. So this is Matlab for you. I have not been able to share it quite so nicely. You can

look at the commands here, okay, from the slides and then try it in Matlab also if you like. This is

just a simple few lines, so it's not worth sharing in great detail anyway, okay?

(Refer Slide Time: 32:18)

All right. So let me once again remind you of what we looked at in this week's lectures. We looked

at eigenvalues, eigenvectors, linear operators very closely, you know? How to compute them, how

to, you know, work with them, how to think of diagonalizing an operator, how to get a diagonal

matrix to represent an operator. The power of it we saw. We saw that upper triangularization is

always possible but diagonalization in some cases, may be most cases, would happen. And I

showed you also three computational tools that you can use as part of this course to try out, you

know, matrices by hand. I would urge you to try it out just pick up some random matrices, look at

eigenvalues, see what they tell you, look at row spaces, look at column spaces, look at rank, just

get a feel for what they are really also, okay? Thank you very much. That's the end of the lectures

for this week. We'll meet again next week. Thank you.

