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Linear state space equations and system stability 

Hello and welcome to week 6 of the lectures on Applied Linear Algebra. We studied eigenvalues, 

eigenvectors and how they provide, you know, a good understanding of linear operators. 

Particularly with respect to repeated application of the operators, when you do 𝐴, 𝐴2 and all that, 

they simplify the, you know, final expressions considerably. And we will see in this week three or 

four applications of eigenvalues and eigenvectors particularly from an engineering point of view 

and also from various other interesting modern ideas as well. So let's see, let's get started with the 

first one which is about, you know, linear state space equations and system stability. This is a very 

commonly used model for many engineering systems. This linear system, state space system type 

model. We will see some very simple examples, we will see how linear algebra comes in and how 

something called stability of a system can be measured using eigenvalues. So let us get started, 

okay?  

So this is a recap. The recap will remain the same for the whole of this week. The applications are 

varied. Eigenvalues, eigenvectors have a huge number of applications. We will see a few 

prominent ones this week, okay? So what is this system state and evolution? So typically when 

you have some, when you're building or when you're engineering something, it's usually a dynamic 

system in the sense that there are a few variables for, that capture the state of the system at any 

point in time and as time evolves these variables change. This could be a mechanical system. 

There’s something rotating, moving, etc. It could be an electrical system where a signal comes in 

and it gets processed etc. So all engineering systems are like this. There are a few key state 

variables and these state variables evolve with time because of your actions, because of some 

environmental thing and you want to keep tracking that as time progresses, okay? So usually there 

will be a set of state variables and this will... So I will keep time discrete. It's like a discrete time 

system. Quite often people use continuous time models. But in this class, that requires tools which 

are slightly beyond us. So we will use discrete time. So time goes as 𝐾 = 0,1,2,3, etc. So this is 

not a bad model. Many systems today work like this. You have a discrete time clock and every 

clock you take some action, you take some measurement. So you can have time quantized in this 

fashion, okay? So this is my state variable, system state so to speak, at time 𝑘. I will call it as a 

vector 𝑥𝑘. I will assume that there are 𝑛 state variables (𝑥𝑘1, 𝑥𝑘2, … , 𝑥𝑘𝑛), okay? So once again, I 

have a system, some engineering system, if you will. It has n state variables which describe it at 

time 𝑘. These variables are denoted as 𝑥𝑘, a vector 𝑥𝑘 and these evolve with time as 𝑘 increases 

from 0, 1, 2 etc. Maybe the initial state is known to us and they evolve with time according to some 

equation that we control, okay? So that evolution is controlled in a linear fashion, okay? So we 



will assume that there is an 𝑛 × 𝑛 matrix 𝐴 which will multiply 𝑥𝑘 to give 𝑥𝑘+1, okay? So this is 

not a bad model. Many systems evolve like this. Maybe not in this exact simple way, maybe 𝐴 has 

some more complications. Maybe there are some mild non-linearities. Maybe there is some noise. 

Maybe 𝐴 itself varies with 𝑘. So you can do a lot of modifications to this model. But the essential 

simple model is 𝑥𝑘+1 =  𝐴𝑥𝑘. It's very popular. Quite often, you know, if you look at, say, control 

systems, they would say state evolves based on the input also. Every 𝑘 there will be an input which 

will also be included in the model etc. But I mean all of those are just artificial additions. As long 

as you have linear property, you can always redefine everything as one big state and write one 

equation like this. Think about why that is true.  
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So you can write like this. So this 𝑥𝑘+1  =  𝐴𝑥𝑘. It's some sort of a linear model for evolution. So 

this is the model that we will look at in this lecture at least to study what happens when a system 

with so many state variables evolves with time in a linear way like this. So what happens 

particularly as 𝑘 becomes larger and larger and larger. So that's what you want to see, right? So 

that's the part which we will look at. Okay. So like I said, so from 𝑘 to 𝑘 + 1, 𝑥, the state variables 

get multiplied by the matrix 𝐴. And once again remember I'm denoting the vector in this form but 

it's actually a column vector, okay? So this just for convenience I am writing like that. It's a column 

vector. Remember that. That's some notation we've been using in this class. So what will happen 

if you look at the time from 0 to 𝑘, the evolution from 0 to 𝑘? You will start getting multiplication, 

right? So you can see why, you know, 𝐴𝑥0 will give you 𝑥1. And then you multiply with 𝐴 again, 

you get 𝐴𝑥1 which is 𝐴2𝑥0. Likewise you will keep getting it. So 𝑥𝑘 will become 𝐴𝑘𝑥0. And this 



𝑥0 is the initial state, okay? So you see how this 𝐴𝑘 enters the picture because of this kind of 

evolution, right? So repeatedly this 𝐴 gets, you know, applied to this, the state of system variables 

and then you get 𝐴𝑘, all right? So now we are interested in what happens to 𝐴𝑘 for different types 

of 𝐴. Can we say something about 𝐴? And you will see naturally these eigenvalues will enter in a 

very nice way and determine what happens in this case, okay?  
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Okay. So in particular there is this notion of stability which is quite popular in engineering systems. 

Bounded input bounded output stable in some sense, okay? So I say input here but what I mean is 

bounded initial state and then bounded final state stable, okay? So I'm just sort of abusing notation 

here to say input, output, okay? So basically what it means is: if 𝑥0 is bounded, if the initial state 

is bounded, nothing is infinity etc. right, which is mostly what's going to happen, 𝑥𝑘 should be 

bounded for all 𝑘, okay? So I want, I want to have this condition. If this is true, then this evolution, 

this 𝐴 is supposed to be bounded input bounded output stable, okay? So BIBO stable is a very 

common abbreviation in many engineering systems. So this is a common requirement. So now we 

will try to look at 𝐴 and see when 𝐴 will result in a BIBO stable system. So what is the kind of 

consideration that we need to come up with, okay? So that is going to be the main objective of this 

lecture and we will see the eigenvalues of 𝐴 will nicely enter the picture and give you a good 

answer. Okay. So this slide sort of captures the instability and the connection to eigenvalues, okay? 

So for what type of eigenvalues will you have BIBO instability, okay? So let us say you have an 

eigenvalue 𝜆 for 𝐴 with eigenvector 𝑣. So we know that this 𝐴𝑣 is going to become 𝜆𝑣, right? So 

if your initial state 𝑥0 is 𝑣, notice what happens. 𝑥1 becomes 𝜆𝑣, right? 𝐴𝑥0. 𝑥0 itself is 𝑣, so 𝐴𝑣 =



𝜆𝑣. Then what will be 𝑥2? 𝐴2𝑥0. And that will become 𝜆2𝑣, right? Because it's, 𝐴(𝐴𝑥0), so that is 

𝜆2 𝑣, right? One more 𝐴𝑣 will come. 𝐴𝑣 is again 𝜆𝑣. So we will get 𝜆2𝑣. So on, you see that 𝑥𝑘 

becomes 𝜆𝑘𝑣, okay? So it's very easy, isn't it? So you see how these invariant subspaces, one 

dimensional invariant subspaces help you when you want to look at stability, BIBO stability, right? 

So you know that the thing is invariant. Only this 𝜆 matters. It keeps on getting multiplied, right?  

So one thing we can conclude from this is: evolution by 𝐴 will be BIBO unstable if |𝜆| > 1, okay? 

So this is easy enough to see. Just let me, just make sure I get this point right. It is BIBO unstable, 

right? So that is the criteria we are looking at. So clearly if |𝜆|... See, I am imagining that 𝜆 could 

be complex as well. Even if 𝐴 is real, 𝜆 could be complex. So that's why I put |𝜆|. If |𝜆| > 1, and 

then you are allowed to pick the initial state to be this eigenvector 𝑣 which could also be complex... 

So we in general will allow our numbers to be complex just to be safe. Maybe they are all real, 

maybe all that works out, but we will allow things to be complex as well, okay? So 𝑥0 is, if you 

pick it to be the eigenvector 𝑣 of an eigenvalue, corresponding to an eigenvalue whose absolute 

value is greater than one, so you see clearly when 𝜆, |𝜆| > 1, 𝜆𝑘 is going to blow up, okay? So 

when this blows up for that input 𝑣, clearly you don't have BIBO stability. So its stability is 

violated, okay? So if the modulus of any eigenvalue becomes greater than 1, then you have 

instability. Absolutely no problem here.  

So what if this is not true? What if all absolute values of 𝜆 are less than 1, okay? Will you have 

stability? So that is something we are yet to prove. We have only shown: if there is an eigenvalue 

with absolute value greater than 1, then the system is going to be BIBO unstable. What if this is 

not there? What if all the eigenvalues are less than 1, can we guarantee stability, okay? So here we 

need to look a little bit closer, okay? So we will start with the simplest case where 𝐴 is 

diagonalizable, okay? So if your 𝐴 is diagonalizable, remember, just because, you know, you have 

an operator it does not mean it has n independent eigenvectors and it always ends up being 

diagonal, right? So there are cases where you do not have as many eigenvectors. So it may not be 

diagonal. But the diagonal case is the easiest to consider when you want to particularly raise it to 

higher powers. We know that for sure, okay? So if 𝐴 is diagonalizable, we know that there is a 

basis of eigenvectors for 𝐴, okay? 𝑣1 to 𝑣𝑛. And there are corresponding eigenvalues 𝜆1 through 

𝜆𝑛. Remember there may be repetitions here, okay? This 𝜆1 to 𝜆𝑛, I am writing it like that but there 

could be repetitions, okay? So remember that. Keep that in mind. I am writing it for simplicity as 

𝜆1 through 𝜆𝑛. So any initial state 𝑥0 since this eigenvector basis is there, I can write it as a linear 

combination of the eigenvectors, right? 𝑥0, any initial state, in fact any vector 𝑣, right, I can write 

as a linear combination of the eigenvectors 𝑣1 through 𝑣𝑛, okay? So those coefficients I am simply 

giving them some names. Some (�̃�01, … , �̃�0𝑛) etc. okay? So the coordinates of 𝑥0 with respect to 

the eigen basis I am calling as (�̃�01, �̃�02, … , �̃�0𝑛), okay? So 𝑥0 may have another, other 

coordinates in the, I mean if you multiply this out maybe you will get its coordinates in the standard 

basis but I am interested in the coordinates in the eigenbasis. Once I write it like this, I can do 



repeated applications of 𝐴 quite nicely because I know each eigenvector is well behaved with 

respect to the operation 𝐴, right?  
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Notice what will happen if I do... 𝑥1 is just 𝐴𝑥0. It just gets multiplied by the corresponding 𝜆s. 

Next is 𝑥2 which is 𝐴2𝑥0 and then it gets multiplied by 𝜆1
2 to 𝜆𝑛

2 . So that's it. So you can keep on 

doing this. You see the kth state from the start time 𝑥𝑘 is simply the same coordinates, but instead 

of 𝑣1 I would have 𝜆1
𝑘𝑣1 and instead of 𝑣𝑛 I will have 𝜆𝑛𝑣𝑛. Quite easy to see, okay? So we see 

interestingly if |𝜆𝑖| < 1, right, for all 𝑖, then I will have BIBO stability. In fact it will be you know 

𝑥𝑘 will always tend to 0, right? Eventually as 𝑘 becomes very large. It depends on, you know, how 

close 𝜆𝑖 is to 1 etc. But if it were to be less than 1, the absolute value, if it is less than 1 then each 

of these terms will tend to 0 and you will have stability. If any of them is greater than 1 then we 

also know it will be unstable. But if it's less than 1 and 𝐴 is diagonalizable, clearly, easily we are 

able to see that this is, this will have this kind of behaviour, right? 𝜆1
𝑘, … , 𝜆𝑛

𝑘 . And you can imagine 

what else can happen here, you know? What if |𝜆| = 1, right? In that case you can have more 

interesting behavior, right? Some of the eigenvectors will not vanish. They will continue to stay 

there whatever happens, how many other times 𝐴 appears, right? So all those kinds of things will 

happen. Interesting behavior like that can be observed if |𝜆| = 1. So you will have some oscillatory 

or, you know, such behavior which is possible. But if |𝜆𝑖| < 1, then everything will go to zero 

eventually. If |𝜆𝑖| > 1, there will be some inputs for which you will get blow up, okay? So that's 

what happens. Most inputs will also end up being like that, okay? So good. We've seen two 

different cases. One where, you know, you have instability because eigenvalue is greater than one. 



Then you are blowing up. And you have stability when 𝐴 is diagonalizable and absolute value of 

𝜆 is, all the eigenvalues are less than one, okay? So you see this absolute value of eigenvalue, 

absolute value of the eigenvalue, okay, control stability in these kinds of linear state space systems, 

okay? So that's a good result to remember, okay? So it's a wonderful application of eigenvalues. 

There's so many systems out there and all of them should, for stability, have eigenvalues 

controlled. That's a good thing to know.  
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What if it's non-diagonalizable? I want to give you a few examples for what happens in the non-

diagonalizable case and point you to a powerful result which helps you capture all the non-

diagonalizable cases also. We won't quite see a proof of this result, but you know, it's interesting 

to know this result at least, okay? So let's take non-diagonalizable cases. We'll start with very 

simple examples, okay? So the example I will start will be the 2x2 case. This is one of the simplest 

cases of a non-diagonalizable 2 × 2, right? So you have 𝜆 on the diagonal, the lower value is zero. 

Then you have 1 on the upper value, okay? So there are two eigenvalues here. And there is only 

one eigenvector, okay? So we have seen this before, okay? So we have seen such examples before. 

This is not a diagonalizable case. You do not have enough eigenvectors, as many as the multiplicity 

of eigenvalues, okay? So now what happens to this when you keep raising it to higher and higher 

powers? You can do this proof, it's not very hard, you can show 𝐴𝑘 is (𝜆𝑘 𝜆𝑘) on the diagonals, 

but it will have a non diagonal value also. It will have 𝑘𝜆𝑘−1, okay? You can prove this for example 

by induction. It is not very hard. You just do 𝐴𝑘, you can go to 𝐴𝑘+1. You just multiply by 𝐴 on 

the left for instance on the right here. You will see you will have 𝜆𝑘+1 on the diagonal, and this 



one will become (𝑘 + 1)𝜆𝑘. So you can see why, how that is set up. It will come out quite easily, 

okay? So you might argue: what about other 2 × 2 cases which are non diagonalizable? So it turns 

out this is a very typical case for 2 × 2 when it is non diagonalizable. There is no other case really, 

right? So see the two eigenvalues have to be the same. So you know that I can make 𝐴 into an 

upper triangular matrix with 𝜆 here. And then this value, you know, can it be something else? Not 

really, right? If you think about it, you can adjust so that it becomes 1. So think about how you do 

another basis transformation to get 1, okay? So it's not as simple as row elimination. You need a 

careful invertible matrix multiplication on both sides and change the bases to get this, okay? So 

it's possible. So this is, you don't lose any generality in the 2 × 2 case, okay? So that is good to 

know. So this is nice, okay? I mean I wasn't really going into detail there, but I'm just saying that 

this is enough. You don't need anything more.  

What about 3 × 3? So once again I will consider a very simple case, okay? So I will consider, in 

the 3 × 3 case I will consider a case where there is (𝜆 𝜆 𝜆) on the main diagonal. Below that is all 

zero. I know I can take it like this upper triangular. Is okay. But on the upper part, I will only take 

1 on the next immediate diagonal and then 0 after that, okay? So I will only consider a case like 

this. So we will see later why these kinds of things are enough, okay? But for now just believe me. 

Let's see, let's handle this case first, okay? So this seems to be a simple case. And if we can't handle 

this, it’s very unlikely we will be able to handle other things. So we will handle this case first. So 

once again there are three eigenvalues, as in eigenvalue 𝜆 repeated thrice. But there is only one 

eigenvector, right? So it's only (1 0 0). There are no other eigenvectors. So once again if you do 

𝐴𝑘 here, this is again a proof you can do by induction. You can even sort of see how this generalizes 

from the previous one. You will have 𝜆𝑘 on the diagonal. And then you will have 𝑘𝜆𝑘−1 on the 

slight, one off diagonal. And then the next one will be, you know, summation up to (𝑘 − 1) then, 

you know, 
(𝑘−1)𝑘

2
. So you can see why this is true. You can sort of multiply and check by induction 

that this will give you the correct formula going forward for 𝐴𝑘, okay? So this is a proof that you 

can do. Notice the important thing here is, okay... So quite often you want exact expressions. But 

the point here is this one. This function is less than or equal to, let's say, 
𝑘2

2
, okay, isn't it? Right? 

It's some, you know, (𝑘 − 1)... So in fact if you don't like even 
𝑘2

2
, you can say it's ≤ 𝑘2. So some 

something into 𝑘2, okay? So this detail, this 
(𝑘−1)𝑘

2
 is sort of, is confusing to us. What really matters 

is it grows like 𝑘2, okay? Like 𝑘2. There could be some constant there. Half or something. But it 

grows like 𝑘2, okay? So there is this convenient notation for functions like this. There are these 

classes of functions, okay? Which are all upper bounded by some constant into 𝑘2, okay? So we 

will define this class of functions. And this notation is very common. O(𝑘2), okay? What is 𝑂(𝑘2)? 

These, this represents the class of function. It is not one function, it is actually a class of functions, 

there are many functions which satisfy this upper bound ≤ 𝑐𝑘2. Usually for large enough 𝑘. But 

even in, you know, we don't even need that for this. Large enough 𝑘, okay? So this is how people 

define this 𝑂(𝑘2). Even though for small 𝑘 there may be some, you know, skirmishes here there, 



once 𝑘 becomes large, this function is upper bounded by 𝑐𝑘2, okay? So that is 𝑂(𝑘2). So it is very 

common to write this instead of writing (𝑘 − 1)𝑘/2. I might as well write like this, right? 
𝑘(𝑘−1)

2
𝜆𝑘−2 seems very confusing. I can write it as 𝑂(𝑘2)𝜆𝑘−2. So you get a sense of what it is, 

right? So this is how, this is used you get a sense that, you know, 𝑘2 is sort of the dominant term 

in this term. I don't really bother about the details of how that term is, I just need to know that it is 

order of 𝑂(𝑘2). This is called big O by the way. Big-Oh. So there is a similar small-oh notation 

and all that. We do not need that as of now. But, right now this big O is a useful thing to quantify 

things like this. Otherwise you know, you will be worrying so much about the exact expression 

here. But while it is not so important to you in the study, okay?  
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So this is 𝐴𝑘 for this case, okay? Can I generalize this? It turns out yes. Let’s take a slightly bigger 

example. 5 × 5. And once again I will take a very simple form where lambda is on the diagonal 5 

times and then there is just 1 showing up on the one off diagonal, okay? So this 𝑎, this is not 

needed, just remove it. So there is only, there are five repetitions of lambda. There is only one 

eigenvector. And what can we say about 𝐴𝑘? So once again 𝐴𝑘 you can do a very careful count 

and, you know, find these exact functions if we want. But it's really not needed, you can use this 

wonderful big O notation that we have found to simply write, you know, the first... On the diagonal 

you will have 𝜆𝑘, one off diagonal you have 𝑘𝜆𝑘−1, that's okay. In the second diagonal one, you 

know, the next diagonal, you will have some function of 𝑘2. You know exactly what that function 

is, 𝑘(𝑘 − 1)/2 or something like that, but I am just simply writing it as 𝑂(𝑘2). In the next one you 

will have 𝑘3, okay? So that will, you can also find out what that is exactly if you want to. If you 



put in some effort, you will get it. But that’s not so important to us. All that matters is it’s 𝑂(𝑘3). 

And the next final thing will be 𝑂(𝑘4)𝜆𝑘−4, okay? So you can prove this, you can prove it by 

induction or various other methods are there. You will get this answer, okay? So the point is 𝐴𝑘 

has these kind of terms. 𝑘4𝜆𝑘−4 and then 𝜆𝑘, 𝜆𝑘. 𝜆𝑘 shows up and then 𝑘 power something shows 

up, okay?  
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So this is what happens for matrices of this form, okay? So 𝜆 on the diagonal and ones on the off 

diagonal, okay? So you might rightfully ask what about other forms of this matrix, you know? 

Right now this thing looks so restrictive. What about other forms of this matrix? So it turns out 

there is a very powerful result in linear algebra which says that these kinds of things are enough, 

okay? So what is that result? That result is what is called this Jordan form for any matrix, okay? 

So it turns out whatever the matrix may be, okay, so whatever non-diagonalizable, diagonalizable, 

general case. Any matrix 𝐴 has something called the Jordan form, okay? What is this Jordan form? 

You can write it in a block diagonal structure like this. 𝐴1, 𝐴2, … , 𝐴𝑚, okay? Each 𝐴𝑖 is an 𝑙𝑖 × 𝑙𝑖 

matrix, okay? So square 𝑙𝑖 × 𝑙𝑖 matrix. And this 𝑛 which is the overall number of columns or rows 

is simply 𝑙1  +  𝑙2  + … 𝑙𝑛, okay? And what is each 𝐴𝑖? The form of each 𝐴𝑖 is either 𝜆𝑖 if 𝑙𝑖 is 1, 

okay? Say the 𝜆𝑖 if 𝑙𝑖 is 1. Or if 𝑙𝑖 is greater than or equal to two, it has a form that we have been 

assuming so far which is 𝜆𝑖 appearing on the diagonal and just ones appearing on the one off-

diagonal. Everything else is zero, okay? So once again let me repeat myself. Every matrix or any 

matrix, diagonalizable, non-diagonalizable, whatever has something called a Jordan form. What is 

the Jordan form? There is a basis in which it becomes block diagonal and every block is either a 



1 × 1 𝜆 or 𝑙𝑖 × 𝑙𝑖, this simple form we have assumed, okay? 𝜆 showing up on the diagonal and 

one showing up off diagonal, okay? Now these 𝜆𝑖s may repeat, okay? They may repeat across 

these 𝐴𝑖s but the form will always be like this. You can always write it like this, okay? So this is 

a fantastic result and this uses ideas called generalized eigenvectors. If we have time later on in 

the class we come back to it. But for now let’s assume this and see what it means for our result.  

So once we know this, what happens now? 𝐴𝑘 will simply become 𝐴1
𝑘, 𝐴2

𝑘 , … , 𝐴𝑚
𝑘 , right? I do not 

need to bother about anything else, okay? Because this is block diagonal, right? When you 

multiply, you will simply get 𝐴1
𝑘, 𝐴2

𝑘, … , 𝐴𝑚
𝑘 . So the only thing I have to worry about for a general 

matrix 𝐴 when I raise it to the power 𝑘 is matrices of this form and of course constants. Constants 

just, you know, just 1 × 1 matrix. They just go up. Not constant, I mean scalars. Just 𝜆𝑖, that raised 

to the power 𝑘 is simply that raised to the power 𝑘. And matrices of this form raised to the power 

𝑘 which I already know how to do, right? I did it for the 5 × 5 case. You can easily extend that to 

the general case, right? So that is possible. All right. So now values of 𝐴𝑘 will always be of this 

form 𝑂(𝑘𝑙𝑖 − 1)𝜆𝑖
𝑘 − (𝑙𝑖 − 1)

, okay? So this is the form for values of 𝐴𝑘. So non-zero values, okay? 

So we see that if 𝜆𝑖, |𝜆𝑖| < 1, these values will tend to zero ultimately as 𝑘 → ∞. So you will have 

stability, okay? So this is the result you might quote. But I mean you might want to be careful 

because, you know, there is this 𝑘𝑙𝑖 − 1 and if this 𝑙𝑖 is very large, right, even if 𝜆𝑖 is reasonably 

close to 1 this may not die down that fast, okay? So you really might need a very large k before it 

dies down. Something to worry about. But still asymptotically at least as k becomes really, really, 

really really large, this will ultimately become stable, okay? So this Jordan form is quite useful for 

these kinds of results. But we will not see it immediately. We will come back and see it later, okay? 

So to summarize we have seen that, you know, if an evolution is linear with an operator 𝐴, then 

the eigenvalues of 𝐴, the absolute value of the eigenvalues of 𝐴 control its stability, okay? So if 

the absolute value is less than 1, you end up BIBO stable. If it's greater than 1, you would not be 

BIBO stable. It can expand. Equal to one is the case we did not consider. It results in some 

oscillatory type behaviour, okay? So that is the end of this lecture. Hopefully you are convinced 

now why eigenvalues are so widely used in engineering, in systems. They play a very central role. 

There is an equivalent expression for continuous time as well but we are not going into that in this 

lecture, okay? Thank you very much. 


