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Hello and welcome to this lecture. In the previous lecture we introduced this notion of inner 

product and norm and saw how these natural notions of dot product and length you've been 

defining in euclidean spaces extends very naturally to abstract vector spaces as well. And we saw 

some basic properties of inner products and norms, how they are related etc. Now we will start 

using inner products and norms in the main problem we have, right? So how to understand 

operators. So we had vector spaces before. Now we have inner product spaces. How do you better 

understand operators in inner product spaces? Most of the applications we would deal with would 

be in an inner product space. So in an inner product space can we say more about operators? So if 

you remember before, we came up to eigenvalues, we saw operators had eigenvalues, eigenvectors 

and some of them could be diagonalized, all of them had an upper triangular matrix representation, 

all of that was true in any vector space, right? So now that you have inner product spaces, can we 

say something more special? Can we think of operators more clearly? Can we classify them? Can 

we understand a lot of these properties, okay? So that's what we're going to start doing. And the 

crucial starting point is this notion of an orthonormal basis and this notion of Gram-Schmidt 

orthogonalization. So these things help a lot, okay? So let's get started. 

Okay. A quick recap. We've seen all of these before. What we saw in the very last lecture, the 

previous lecture was this notion of inner products and norms and orthogonality and related 

properties and very nice results based on inner products and norms. Particularly the Cauchy-

Schwarz inequality. Very nice inequality which relates inner products and norms. Okay. So we'll 

make a very small definition which looks like a simple definition, but it will have very, a lot of 

interesting simplifications will happen in our understanding of operators when we do this. So 

throughout this lecture we will think of V as an inner product space. Maybe one or two times will 

not have that assumption, but mostly it will be an inner product space. I will call a list of vectors 

{𝑒1, 𝑒2, … , 𝑒𝑚} as orthonormal if the two conditions are satisfied. What are the two conditions? 

One is ortho, one is normal. Normal means the norm is 1, okay? So that's sort of like the way in 

which it's defined. And in this sense, orthonormal sort of implies norm is 1 and ortho means any 

two vectors, two distinct vectors have an inner product of 0, okay? So basically it just says <

𝑒𝑖, 𝑒𝑗 > =  1 if 𝑖 = 𝑗 and 0 of 𝑖 ≠ 𝑗, right? So that's what this also means, right? So that's the notion. 

Because we know that the, you know, the norm comes from the inner product, all of that is assumed 

here. Since that is true, this is the definition, okay? So this orthonormal list of vectors, do they 



exist? Can you come up with an orthonormal list of vectors? I mean naturally you might ask these 

questions. But what is the benefit of having an orthonormal list of vectors? What's the big deal 

with, you know, orthogonality, okay? So we will see they simplify a lot of things. We will start 

looking at initially some simplifications. As we go further, you will see the power of the 

orthogonality and simplifications entering the picture, okay?  
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Here are a couple of basic examples just to motivate and convince you that orthonormal vectors 

do exist, okay? The standard basis is a standout example, okay? So an immediate example. You 

quickly see that orthonormality is satisfied for the standard basis. It's very easy to convince 

yourself that that's true. Here is another example which is maybe slightly more non-trivial, okay? 

So you see (
1

√2
,

1

√2
), (

1

√2
, −

1

√2
). So this satisfies all the conditions that we have. Each vector is unit 

norm and, you know, I mean I'm thinking of the two norm here, okay? So in this thing, it's 

euclidean two norm, okay? So it's got unit norm and dot product is zero. So familiar dot product 

is what I'm using, okay? So this is orthonormality. Okay. So there is a connection between 

orthonormality and linear independence, okay? And also orthonormality simplifies things when 

we look at things, okay? So let's look at why that is so. Here is a very nice result, okay? If you 

have an orthonormal list of vectors and you do a linear combination of them, okay? I do a linear 

combination with the orthonormal set, okay? 𝑎1𝑒1  +  … +  𝑎𝑚𝑒𝑚. So 𝑎𝑖s are scalars, okay? So 

maybe I should mention that here. 𝑎𝑖s are scalars, okay? So you do a linear combination with the 

orthonormal list of vectors and you look at the norm square after the linear combination, okay? So 

maybe you're thinking, you know, it's a linear combination, I have to use the properties of the inner 



product etc. But remember all of them are orthogonal. If you use those properties, and you start 

cancelling out etc. you will simply directly get sum of the absolute value square of the 𝑎𝑖, okay? 

So it's a very easy and simple result. So you see already that linear combinations are very, very 

simple to deal with when you think of orthonormal vectors and so that's at the heart of a lot of 

simplification in our understanding of linear operators, okay? So proof is very easy. I don't want 

to go into details. You just write it as an inner product of this vector, the linear combination vector 

with itself, then expand it out, a lot of cross terms will cancel, the same terms will simply give you 

value one and you get the answer, okay?  
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Here's another result, okay? An orthonormal list of vectors, orthonormal set of vectors, they are 

also linearly independent, okay? So it's quite easy to see. The proof can come directly from above, 

okay? If it turns out the linear combination is 0, then their norm is 0 which means each of the |𝑎𝑖|
2  

is equal to 0, each of the 𝑎𝑖 is 0, okay? So that shows that a set of orthogonal vectors or orthonormal 

vectors, they are also linearly independent, okay? So you immediately see the connection there. It 

is not very difficult to imagine. You can have a linearly dependent set which is not orthonormal, 

that's possible, okay? So it's not, if and only for anything. There are very many linearly independent 

sets which are not orthonormal, but orthonormal sets are linearly independent, okay? So this 

immediately gives you a lot of restriction. So if you have a finite dimensional vector space, how 

many orthonormal vectors can you have? As many as the number of basis vectors, right? The 

dimension limits the number of orthonormal vectors that you can have as well, okay? So these are 

all nice results that come about once you identify the connection between linear independence and 



orthonormal set, okay? So you see that, you know, orthogonality is linear independence and more, 

okay? So it gives you linear independence. But also means the dot product is zero, right? So that 

gives you more, a stronger characterization of basis vectors, okay? Right? So that’s interesting to 

have, okay? So this leads to the definition of an orthonormal basis, okay? An orthonormal basis 

for an inner product space 𝑉 is simply what the name says. It should be a basis and it should also 

be an orthonormal set, okay? So now that we know that an orthonormal set is also linearly 

independent, it is very obvious that if you have a finite dimensional vector space 𝑉 and the 

dimension is 𝑛 and if you produce 𝑛 orthonormal vectors, right, then that forms a basis. So we see 

that this orthonormal basis is going to be something that's really very interesting, right? So when 

you have an inner product space, this is what distinguishes the inner product space from a space 

without an inner product. You can have an orthonormal basis, okay? You can have the possibility 

of an orthonormal basis. So far we haven't shown that there exists an orthonormal basis. We are 

only shown one can even at least conceive of an orthonormal basis, okay? And we see that 

orthonormality can give you a lot of simplifications, particularly expressing vectors in terms of an 

orthonormal basis will end up being very nice and simple and elegant. And they are connected to 

the inner product and all that. We will see that soon enough in the next few slides.  
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So are there orthonormal bases? Yes definitely, right? So you can immediately come up with an 

example. The standard basis is an orthonormal basis, right? In any vector space that we take we 

have taken so far, ℝ𝑛, ℂ𝑛, you take the standard basis. It's an orthonormal basis. So orthonormal 

bases do exist. They are there. But are they there all the time in an inner product space? We don't 



know that yet. But they are there at least. There are at least one or two examples, okay? I'll give 

you one more example. Maybe it's not immediately obvious, but this is an ℝ4 and you can see this 

is an orthonormal basis, right? So you can check for yourself that any two vectors are orthonormal 

here. And, you know, you can do the calculations if you like. And at the same time they are all 

unit norm. This is ℝ4, right? And I am doing the dot product and usual two norm, okay? So this is 

the, this is an example. So there are, looks like there are many orthonormal bases. We will see 

soon enough that there are indeed orthonormal bases. But orthonormal basis is, looks like it exists.  
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But what is the advantage? Is there, are there advantages? Are there simplifications in using an 

orthonormal basis? It turns out yes. Already if you just think in terms of coordinates, you'll see an 

advantage. And then when you think in terms of operators, you'll see there are more interesting 

advantages, okay? So first thing is, if you think of an inner product space and you have a basis 

{𝑒1, … , 𝑒𝑛}, if you ask me what are the coordinates of a vector 𝑣 in the above basis, I do not have 

an easy way to establish this, right? So you have a 𝑣 and then I have to write down some equation, 

I have to see how to express this. Maybe a matrix equation, maybe some linear equation solving, 

all sorts of things are needed if I don't have orthogonality. If you have orthonormality, look at what 

happens. If this basis is orthonormal, all you have to do is evaluate inner products, okay? You take 

your vector 𝑣, you evaluate inner products with each of the basis vectors and do a linear 

combination with them, you will get 𝑣, okay? So it's very, it seems like a very intuitive and easy 

result. Maybe you learned this in so many ways in previous classes but one can prove this quite 

easily, okay? So 𝑣 when expressed, okay, in the basis {𝑒1, … , 𝑒𝑛}, okay? First of all it's a basis. So 



you know that 𝑣 can be expressed as a linear combination of 𝑒1 to 𝑒𝑛. And after that it's a very 

easy exercise to show < 𝑣, 𝑒1 > is simply the first coefficient. < 𝑣, 𝑒𝑛 > is the last coefficient. 

Not only that, we saw before that the ||𝑣||
2
 is simply the norm square of, I mean mod square sum 

of each of these coefficients, okay? So all this is very nice. So expressing a vector in terms of an 

orthonormal basis is very, very trivial. You simply what's called project onto each of these, you 

know, basis vectors, take the inner product with each of these basis vectors and simply scale them 

and add them, you get your answer, okay? So it's an easy proof. I'll skip the details of that, okay? 

So this has become simplified.  

But, you know, what else can happen with operators? That's also an important question, okay? So 

so far we have been sort of skirting the question of: do orthonormal bases exist, do they have, are 

there orthonormal bases for a finite dimensional vector space, can you find them, are there easy 

ways to find them. And that's what's given by this Gram-Schmidt orthonormalization procedure. 

It's a very simple procedure. It sort of converts a linearly independent set into an orthonormal set 

with the same span, same incremental span. So I will talk about how that, how it works and why 

that is so shortly. But take that as an important definition. So basically if you have a linearly 

independent set, this Gram-Schmidt process will output an orthonormal set but with spans being 

the same. So at every level spans will be the same. So it's a very powerful and very simple and 

elegant procedure, okay? So how does that go? The input like I said is a set of linearly independent 

vectors in your inner product space. So the first thing you do is you take the first vector and 

normalize it, okay? So this process of dividing a vector by its norm, it is called normalizing. So 

what happens after normalizing? The norm of 𝑒1 will simply become 1, isn't it? So that's a nice 

thing to do. So you can normalize. Norm of 𝑒1 becomes 1. So this is called normalization, okay? 

So notice this normalization. So dividing a vector by its norm makes the overall norm as 1, okay? 

So you can quickly prove it. It's not very hard, just use the homogeneity property and you will get 

just 1, okay? So this normalization will be one property. But normalization alone is not needed, 

right? So just because you do 𝑒1, you cannot say 𝑒2 is simply norm, you know, 𝑣2/||𝑣2||. But then 

𝑣1 and 𝑣2 will not be orthogonal. I also want the orthogonality, right? I want the output from this 

process to be orthogonal. So for that we will use some sort of an orthonormal decomposition idea 

and this is what will happen. So this is what the, this is what the process does, okay? So in general 

for a particular 𝑗, this is the step. But let me just show you what happens for 𝑗 = 2, okay? So that 

will help you. Let's go to 𝑗 = 2.  

You will define 𝑒2 as (𝑣2 − < 𝑣2, 𝑒1 > 𝑒1) divided by the norm of the whole thing, okay? Forget 

about the norm coming in the denominator, so that is just to normalize, right? So this (𝑣2 − <

𝑣2, 𝑒1 > 𝑒1), that is going to be... This guy, the guy in the numerator is orthogonal with 𝑒1, okay? 

So that's the crucial part, okay? And that's very easy to show, right? So for instance you can show, 

so, you know, (𝑣2 − < 𝑣2, 𝑒1 > 𝑒1), right? What will this work out as? < 𝑣2, 𝑒1 >, okay, just use 

the additivity property, minus < 𝑣2, 𝑒1 >< 𝑒1, 𝑒1 >. And < 𝑒1, 𝑒1 > is 1. So that ends up being 

true, okay? So how do you prove the orthogonality? Simply by evaluation. So what's being done 



here? It's not very hard to imagine, right? So you are taking this, the same orthogonal 

decomposition approach, okay? So you decompose 𝑣2 into a part that lies along 𝑒1 and then you 

subtract it out, you will get a part that is orthogonal to 𝑒1, right? So that's the same orthogonal 

decomposition. I am just writing this out once again to show you that that's true. And then once I 

get the orthogonal thing, I simply divide by its norm to get 𝑒2. So norm of 𝑒2 will be 1. And 𝑒2 

and 𝑒1 will be orthogonal, okay? So that is the condition here.  
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Now what do you do for arbitrary 𝑗? You take 𝑣𝑗  and simply subtract < 𝑣𝑗 , 𝑒1 > 𝑒1 minus <

𝑣𝑗 , 𝑒2 > 𝑒2 so on till < 𝑣𝑗 , 𝑒𝑗−1 > 𝑒𝑗−1. And then divide by its norm. So this process you can see 

every step will keep giving you normalized vectors, norm 1. And at the same time all of them 

being orthogonal to each other at every step, they are orthogonal, orthogonal, okay? So that is the 

nice little result. I mean there is nothing more to prove here. It is a very simple process and you 

can take any set of vectors and try it out, it is very easy to prove this, okay? So the output 𝑒1 

through 𝑒𝑚 is an orthonormal list. Not only that, okay, the orthonormal list part is easy enough to 

show, but notice what has happened here. This is very, very crucial. The 𝑠𝑝𝑎𝑛{𝑣1, … , 𝑣𝑗} for 

every 𝑗 is the same as 𝑠𝑝𝑎𝑛{𝑒1, … , 𝑒𝑗}, okay? This maybe takes a little bit of proving and you can 

prove it by induction, it is very easy, okay? So but the span is the same and it's not too difficult to 

imagine why. Because 𝑒1 was proportional to 𝑣1 and 𝑒2 was 𝑣2 minus something, right? So it was 

still, the span will remain the same, okay? So this linear independence and the span does not 

change, okay? So this is crucial. And for every 𝑗 the span remains the same. Not just the overall 

span, okay? So it's almost like the Gaussian Elimination sort of process, right? So there are these 



processes which are very important. First was that row, elementary row operations which helped 

you do rank and all that. Next was this upper triangularization with eigenvalues which helped you, 

you know, do something. And here is an orthonormalization process. From linear independence, 

you can go to orthonormal case also, okay? So the proof you can do by induction on 𝑗, particularly 

the fourth part, the last part, the span being the same is easy to do with induction on 𝑗. I’m skipping 

the details. You can see in the book also. There are details of the proof. But you can see intuitively 

why this should be true, okay? So this process which is called the Gram-Schmidt 

orthonormalization procedure is very, very important, okay? So this shows you that there are 

orthonormal sets of vectors that you can easily generate. Given linearly independent sets, we know 

there are linearly independent sets. So take linearly independent sets. From there you can generate 

orthonormal sets, okay? So that's very nice.  
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So this also gives you many more results, okay? So particularly about existence and extension 

possibilities, okay? So supposing you have an inner product space which is finite dimensional. 

Then that has an orthonormal basis. What do you do? How do you prove this? It's very easy. You 

simply take a basis for 𝑉, you know that there is a basis for 𝑉, and you perform Gram-Schmidt. If 

you do Gram-Schmidt, you will get an orthonormal basis, right? So you know that every inner 

product space now if it is finite dimensional it has an orthonormal basis. Next is: an orthonormal 

list of vectors can be extended to form an orthonormal basis. Supposing you have a large 

dimensional vector space and you have a few orthonormal vectors, a list of orthonormal vectors. 

You can extend them without affecting them, you can extend them to form an orthonormal basis 



overall, okay? So how do you do it? Again you do the same method, right? You take the original 

orthonormal list, you know it's a linearly independent list, you simply extend it to form a basis, a 

general basis without worrying about orthonormality. And then you apply Gram-Schmidt on this 

whole process, right? What will happen when you apply Gram-Schmidt? The initial set of 

orthonormal things will not change. The reason is Gram-Schmidt is going to keep doing these dot 

products and all of them will remain the same, okay? If you already have orthonormality, why will 

Gram-Schmidt do anything? It won't do anything, only afterwards it will start making it 

orthonormal, okay? So you will have an extension also possible. So this orthonormal basis in an 

inner product space is as powerful as a basis and as prevalent as a basis, okay? There are 

orthonormal bases and you can take small orthonormal sets and extend them to form a basis, okay? 

So in inner product spaces, you can happily have orthonormal bases. Of course you also have other 

bases which are not orthonormal, but orthonormal is particularly interesting. When you have 

orthonormal bases, so many computations become easy and you'll see later on also many more 

computations will become easy for you in an orthonormal basis. So as far as possible, you should 

try to work with an orthonormal basis. And only when orthonormality does not make sense you 

should move away from it, okay? So this is a very useful principle when you deal with vector 

spaces and operators, okay? So this is... And they do exist. Extension exists. Orthonormality also 

exists. 
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Okay. So let us come back to this upper triangular matrix representation and see a very interesting 

result about orthonormal bases in inner product spaces. Supposing you have an arbitrary vector 



space. At this point I am not saying inner product space. Vector space. And you think of an operator 

𝑇, okay? And you have a basis, we always think of a matrix for that operator in that basis 𝐵, right? 

So we know how to do this. We know this very nice result about upper triangular matrix 

representations. But what do upper triangular matrix representations really mean? This matrix will 

be upper triangular if and only if the 𝑠𝑝𝑎𝑛{𝑣1, … , 𝑣𝑗} for every 𝑗, the 𝑠𝑝𝑎𝑛{𝑣1, … , 𝑣𝑗} should be 

invariant under 𝑇, okay? So this is an interesting way of characterizing the upper triangular matrix 

representation. So far we've just said upper triangular. But what does it really mean in terms of, 

you know, what the operator is? It turns out this is what's important. If, over a particular basis, the 

operator has an upper triangular matrix representation, this is an if and only if condition, okay, 𝑣1 

to 𝑣𝑗  it has to be invariant under 𝑇, okay? So the proof is not very hard. I'll just write down the 

matrix for you and you'll see the proof will sort of follow. If your matrix is upper triangular like 

this, you can see if you take the first 𝑗 coordinates and you do linear combinations with them, only 

the first 𝑗 are going to be non-zero, right? So there is invariance sort of with respect to that. Bottom 

part is zero. And the other way also is true. If you have a basis in which the first 𝑗 alone are going 

to be involved, if you express the operator in that basis, you will naturally get an upper triangular 

representation, okay? It's a very simple characterization of what it means to have an upper 

triangular matrix representation, okay? So this sounds very simple but it's very important. 
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So now you will see a lot of things will come together because the 𝑠𝑝𝑎𝑛{𝑣1, … , 𝑣𝑗} has to be 

invariant under 𝑇. So this is the condition that's important, okay? We have seen before that, you 

know, every, if you have over the complex field, when you have eigenvalues, when you can have 



eigenvectors over the complex field, any operator has, over a vector space over complex numbers, 

has an upper triangular matrix representation, okay? So that we have seen before, right? So we 

saw one of the results. How to get an upper triangular matrix representation for a, for an operator 

in a complex vector space. What about orthonormal basis, okay? Can you have an upper triangular 

matrix representation with an orthonormal basis? That's a great question, right? And the answer is 

yes. And that's what's called Schur’s theorem, okay? So it's a very popular idea, very important 

theorem. If you have a finite dimensional inner product space over ℂ, over the complexes, where 

you have eigenvalues and eigenvectors and all that and you have an operator 𝑇, it turns out there 

exists an orthonormal basis such that the matrix of 𝑇 with respect to 𝐵 is upper triangular, okay? 

So that's a powerful result. It's called Schur’s theorem. And the proof is actually, we have already 

seen the proof, it is not very hard to see, okay? We know that there exists a basis in which 𝑇 is 

upper triangular because it is over complexes, right? So eigenvalues, eigenvectors exist. So you 

can use that and make an upper triangular matrix. Now you take that basis in which its upper 

triangular and simply run Gram-Schmidt on it. When you run Gram-Schmidt on it, you get an 

orthonormal basis.  
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Not only that, the, you know, the 𝑠𝑝𝑎𝑛{𝑒1, … , 𝑒𝑗} is the span of, same as 𝑠𝑝𝑎𝑛{𝑣1, … , 𝑣𝑗}, okay? 

So 𝑠𝑝𝑎𝑛{𝑣1, … , 𝑣𝑗} is invariant under 𝑇. 𝑆𝑝𝑎𝑛{𝑒1, … , 𝑒𝑗} is also invariant under 𝑇. So the matrix 

with respect to 𝐸 is also upper triangular, okay? And that's the end of story, okay? So look at this 

very nice result that we have now already. If you have an inner product space, we know that there 

are these orthonormal bases. And orthonormal basis simplifies the description of the coordinate 



system, simplifies operating with vectors etc. We will see more and more later on. But as it is, you 

can easily be convinced that that's true, okay? So we saw before that in a vector space where 

eigenvectors, eigenvalues exist, you can have an upper triangular matrix representation, vector 

space over complex numbers. Now because we have an inner product space, right, you can have 

an orthonormal basis in which the operator will have upper triangular matrix representation, okay? 

So that is very nice. It’s very convenient and a good thing to have, okay? So we can work with 

orthonormal basis in an inner product space and not really lose anything that is significant, okay? 

So that's a nice result to have. And I'll stop here for this lecture and pick up from here in the next 

one. Thank you very much. 


