
Applied Linear Algebra 

Prof. Andrew Thangaraj 

Department of Electrical Engineering 

Indian Institute of Technology, Madras 

 

Week 08 

Linear equations, Least squares solutions and Linear regression 

Hello and welcome to this lecture. This and the next lecture we will see a couple of applications 

of projections and this distance minimization which is very popular in engineering, some areas. 

And they've sort of taken a life of their own. There's the terminology associated with those ideas 

and it's a, it's a pretty big area by itself. But at the root of it, at the base of it are simple projections 

onto an orthonormal basis using an orthonormal basis onto a subspace, okay? So I want to show 

both those examples and just bring out how linear algebra connects all of those together, okay? So 

the first one revolves around solving linear equations, least squares solutions specific, slightly 

variant, I mean different from actually solving the equation. When you cannot solve, this is sort of 

the best you can do, the least square solutions. And how there is this idea of linear regression which 

is very popular in machine learning today. And we will talk about how that has roots on the least 

square solutions idea, okay? So let us get started.  
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Okay. Quick recap. We have been talking about, you know, operators of late and particular 

operators in inner product spaces. And when you have an inner product and a norm, there is this 



notion of orthogonality. And subspaces have orthonormal bases. And you can project any vector 

onto that subspace using the orthonormal basis and you get, you know, the closest vector in the 

subspace. And so that anytime you solve an optimization like that in an elegant way, it has a lot of 

applications, right? So and then there are applications that come out of it and let's see one of those 

primary applications which is this notion of regression or least square solutions to a linear equation. 

Okay. So let's remind ourselves what linear equations are. You have, so we will predominantly 

stick with real valued, you know, real field. Vector spaces over real field. And the applications. 

But, you know, many of the ideas can be extended quite easily. But let us begin with linear 

equations. A matrix is given to you. 𝑚 × 𝑛. And a vector, 𝑚 × 1 vector, column vector is given to 

you. And you have to find an 𝑥 such that 𝐴𝑥 =  𝑏. So this is the standard linear equation. And you 

know that there is a solution if 𝑏 is in the range of 𝐴. Range is the column space of 𝐴. 𝐴𝑥 is simply 

an element in the range. So if 𝑏 is not in the range, there is no chance that you will have a solution. 

Solution exists only if 𝑏 is in the range of 𝐴, okay?  
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So you notice one interesting observation particularly when you have inner products and norms 

and all that. When the solution exists, the ||𝐴𝑥 −  𝑏|| is equal to zero, right? It is exactly equal to 

zero. So when, so maybe you can find, if there are infinitely many solutions there may be many 

𝑥's, but still 𝐴𝑥 is always 𝑏, right? So 𝐴𝑥 equals 𝑏 and 𝐴𝑥 −  𝑏 has norm zero, okay? So in a way, 

when solution exists, the solution to 𝐴𝑥 = 𝑏 is actually the minimizer for the norm, right? So, I 

mean, it's just when you have a solution, it all seems very redundant to think of it this way. But 

you can think of the solution in that fashion, okay? So what is the solution to 𝐴𝑥 = 𝑏? It's that 𝑥 



which minimizes ||𝐴𝑥 −  𝑏||, okay? When solution exists... Of course norm is non-negative. So 

norm goes to zero, right? So that's the least possible value it can take. So that seems to fit. So the 

idea is when there is no solution, what do you do, okay? When 𝑏 is not in the range of 𝐴, you can 

extend this minimization definition and get what's popularly called the least squares solution to 

linear equations, okay?  
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So given a linear equation 𝐴𝑥 =  𝑏, the least squares solution is argument of the minimizer of, 

minimization of 𝐴𝑥 =  𝑏 over 𝑥, okay? That 𝑥 which minimizes ||𝐴𝑥 −  𝑏|| is your least squares 

solution, okay? So now the advantage of this is: you don't have to bother whether 𝑏 is in the range 

of 𝐴 or not, okay? If 𝑏 is in the range of 𝐴, yeah, well and good. I will give you the best solution 

for the minimizer. If 𝑏 is not in the range of 𝐴, I can still get something with the least squares 

solution, right? So I have hope of getting something, okay? So that's the nice thing about this least 

squares solution. It not only gives you a linear equation, so given that you have an inner product 

also in this space, it uses that to find the closest vector in the column space of 𝐴, okay? So that's 

what. So your 𝑏 is not in the column space, so you can't find an exact 𝑥, so you find an 𝑥 which 

takes you closest to the 𝑏, right? So that sort of makes sense. So that's least squares solution, okay?  

What're the properties? Some very quick properties to see. If 𝑏 is in the range of 𝐴, least squares 

solution coincides with the usual solution. That's easy to see. If 𝑏 is not in the range of 𝐴, the 

solution to this problem is well defined, okay? Why is that? Because it is very easily connected to 

orthogonal projection, okay? So you might say is the min
𝑥

‖𝐴𝑥 − 𝑏‖2 , is that well defined? You 



may want to use some calculus etc. to prove it. But we can use this notion of projection and 

elegantly conclude that the solution will always exist, okay? So why is that? Supposing you have 

an 𝑚 × 𝑛 matrix 𝐴 and 𝑏 is an 𝑚 × 1 vector. 𝐴𝑥 =  𝑏 the equation is given to you. You can define 

a subspace 𝑈 as the range of 𝐴, okay? And then clearly you see that 𝐴𝑥 belongs to range of 𝐴, 

okay? And 𝑏 is some vector. So the 𝑎𝑟𝑔 min
𝑥

‖𝐴𝑥 − 𝑏‖2  is the same problem as finding the closest 

vector in the subspace 𝑈, okay? As you vary 𝑥, 𝐴𝑥 goes over all possible vectors in the range of 

𝐴, so you can redefine that as argument of min
𝑢

‖𝑢 − 𝑏‖2. So all you are doing is finding the vector 

closest to 𝑏 in the subspace 𝑈. And we are in an inner product space, so you know that's all well 

defined. And you will get the closest vector in the subspace as the least squares solution, okay?  
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So notice what is going on. So when 𝑏 is in the range of 𝐴, you may have many solutions for 𝑥. 

When 𝑏 is not in the range of 𝐴, you simply look at the projection of 𝑏 onto 𝑈 and solve for 𝐴𝑥 

equals that projection, okay? So that is the idea here. So you take the projection operator onto 𝑈. 

You know how to do that. And then the least square solution to 𝐴𝑥 = 𝑏 is the same as solving 

𝐴𝑥 = 𝑃𝑈𝑏, okay? Instead of solving for 𝑏, you solve for the closest point of 𝑏 inside the subspace 

that you want, okay? So it's sort of a natural extension. But we know that this has a solution, right? 

So there is no problem with worrying about does it have a solution or not. This definitely has a 

solution, okay? 𝑃𝑈𝑏 is definitely in the range of 𝐴, right? It is a projection on to 𝑈, so it's in 𝑈, so 

you will have a solution, okay? You may have even infinitely many solutions for this, okay?  
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So this notion of a least squares solution is used in linear regression and other such applications 

inside machine learning and other areas. So what I have done to explain that is created a Colab 

sheet where I have taken some data in the spirit of machine learning from the real world. In fact 

given that we are in the IPL season currently, I have taken data from IPL first innings score. So 

you can go to some cricket websites, they'll give you this data. You might have to write some 

scripts to modify them etc. But I've created this matrix 𝐴 here which is a 20 × 747 matrix, okay? 

So you start seeing these kinds of applications, right? So a lot of linear algebra that we study: 

orthogonal projection, least square solutions have applications in the real world. And when you go 

there, the sizes of these matrices are big and you need these kinds of tools to deal with them. It's 

difficult to, you know, just write them down like 20 × 747. Why would I write that? In fact, I 

looked at the data. There’s been about 760 odd IPL matches so far. Some of them have no result. 

I didn't take the no result matches. I don't know why, I just wasn't sure about it, so I dropped all of 

those. I only took the matches which had a result. And that's 747 so far. And what is this 20? What 

is this 20 × 747? I'm going to take the number of runs scored in each over, okay? So each column 

of 𝐴 is one match, okay? And the ith entry in the column is the number of runs scored in that over, 

okay? There are 20 overs in an IPL match in the first innings. So you look at the ith entry in a 

particular column, that would be the number of runs scored in the ith over, okay? So this file A.npy 

is a numpy saved file. I have given a link for you and there you can go download that file and put 

it in your local disk or some Google drive or something and access it from your own version of 

Colab. So that'll, you might have to change the link there. So that will give you the data, okay?  
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So once you have this matrix 𝐴 with you, you have all the data, right? And now you can start 

thinking of sending up some linear regression type problem. And I am going to show you one 

example. It actually may be a very bad example, I am just giving you one flavour. There are so 

many other problems where you can use the similar idea, but I'm just picking up some very simple 

thing, okay? So what am I going to do? So I've written a couple of commands here. I'll come to 

this later. But let's look at this linear regression setup as I have explained here in the text, okay? 

So I'm going to first define A10 which is a 747 × 10 matrix. I'm first transposing that. I had 

20 × 747, I'm making it 747 × 20. It's just a transpose. It's easier to deal with. Row 𝑖 of A10 is 

the run scored in the first 10 overs of match 𝑖, okay? So hopefully that is clear to you. So every 

row is a match now, because I have transposed it, every row is a match and I'm keeping only the 

first 10 overs, okay? So why am I keeping only the first 10 overs? I'll tell you. That's what I want 

to do. So that's what I've done in the command here, right? So A[:10,:]. And then I've transposed 

it. So I'm keeping only the first 10 overs. I'll tell you why this learning problem is involving 

something like that. And then I have a number here which is A15t, okay? So I have a vector here 

of length 10. For every match, it is the run scored in each over for each of the first 10 overs. That's 

my vector. And then I also have A15t which is the total score of at the end of 15 overs of the ith 

match, okay? So this will be a 747 × 1 matrix and that is what I have done here. A15t I am 

summing up to the 15th row of the matrix A and then transposing, okay? So this axis 0 tells me that 

you do the column sum, okay? So this is A15t is the total score at the end of 15 overs, okay?  



So maybe you can sort of smell where I am going here. I have the runs scored in the first 10 overs. 

And I'm also keeping the total score at the end of 15 overs, okay? So now we think of linear 

models. So what is this linear model that I'm thinking of? I'm going to hypothesize that the total 

score 𝑦𝑖 at the end of 15 overs in match 𝑖, okay, is a linear function of the vector 𝑥𝑖 which is, you 

know, the run scored in each of the first 10 overs. Is that okay? So I take this number of runs scored 

in each of the first 10 overs and then I want to project or I want to guess or predict what will be 

the total score at the end of 15 overs, okay? So I don't know what's going to happen in the next 

five overs, but still can I, using this data, come up with some estimate for what will be the total 

score at the end of 15 overs, okay? So I'm going to hypothesize that that will be a linear function, 

okay? So why linear function? Because, you know, that's the easiest I can deal with. So let’s start 

with the linear function. So once I hypothesize it’s a linear function, I only need these coefficients, 

right? [𝑎1  … 𝑎10]. And I will multiply 𝑥𝑖 by 𝑎𝑇, okay? 𝑎 I am thinking of as a row vector. So if 

you do 𝑎𝑇… 𝑥 is a row vector, 𝑎𝑇 is a column vector. I am simply doing a linear combination to 

give 𝑦𝑖.  

So my hypothesis is a linear model, right? So 𝑦𝑖 is a linear combination. I do not know what the 

𝑎's are, okay? So in any machine learning problem typically you try to find these 𝑎's, okay? I have 

to now use the data that I have, this 747 data that I have collected and then I try to find the value 

of 𝐴, okay? So what is the idea? So we will solve the linear equation, okay? So this gives you 

equations, right? We will do that with about half of the data, okay? I do not want to use all the 

data. So this is very typical in machine learning. This is how you work. You take half the data. 747 

maybe half is some 400 or something, okay? I'm just taking 400 of the data points and I'm going 

to solve the equation that I get using the least square solution because I know least squares solution 

will always be there. I mean, I may not get exact solution for these linear equations, the model may 

not fit. But, you know, I can always do a least square solution. So I will get some answer, okay? 

How do I know if that answer is any good? I can test the solution on the remaining data, right? So 

I have, I take half the data, I compute the 𝑎 and then keep that same 𝑎 and actually compute the 

projected thing for the remaining things and see what my error is. Am I doing good on the 

remaining data. So this is a method that machine learning normally uses. You have taken all the 

data, split into two, you know, you compute the model parameters using the what's called the 

training set. The first training data. And then use that and test it on the testing set which is what 

you have kept away. You use that in the, use that model, evaluate your prediction on that model 

and then test it out, okay?  

So that is what I have coded here. You can see what I have done. I have taken A_train as the 

A10[:400, :]. So only the first 400 matches I am keeping. And y_train is the actual output. So I 

will take the actual output for the first 400 and then numpy has this implementation called lstsq 

which is least square solution, okay? So if I give you A_train and y_train, it will give you the 

solution for 𝑎, okay? Well it will give you, it will give you many more things, so I am just keeping 

a[0]. a[0] is the solution and you can see the answer. And I think if you look at it most of you 

probably are not going to be surprised that each of these coefficients are around 1.5, right? I mean 



if, without any further, you know, looking very closely at the data, if you had to guess from 10 

overs what will be the score in 15, you're going to multiply by 1.5, right? You take the total and 

then multiply by 1.5. So that's the machine learning algorithm sort of learning that. But, you know, 

there are some coefficients which are a bit off, you know? I mean this 1.7 in the last one, there's 

some 1.4 in the third one, 1.7 odd in the fourth one. I mean, sort of around 1.5. But little bit off 

here there, I don't know, I mean this is what this data is telling you. God knows what happened in 

the first 400 matches. You can think of so many other factors here we're ignoring when we find 

just this. But this is okay, you know? You got some coefficients.  
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Now how good is your prediction? You have to test, right? So you take your A_test and then y_test 

and then you find your prediction. What's your prediction? You do the multiplication of A_test by 

a[0], right? So that's your prediction. Your y_test is the actual score and you compute your squared 

error, okay? y_pred minus y_test squared. The **2 just squares and np.sum sums. And then you 

can take root mean square, right? So you can divide the error by 347 which is the total number of 

test data. And then take the square root. So the answer comes out to be something like 14, okay? 

So this learning method at least for the data that I've given you seems to be off by 14. 14 runs in 

the IPL thing. So you may want to test it with other type of things. I mean, of course, the least 

squares with any linear model, this will be the best. You can't beat it with the linear model, right? 

So if you, for instance, if you just multiply the total score after 10 overs by 1.5, that will definitely 

be poorer than this, right? So because it can be, this is optimized with this kind of test data, okay? 

Now hopefully this showed you what is going on here, how these equations are formed and why 



this linear regression sort of relies on least squares in a very interesting way. So this is the idea, 

okay? So you have data that you collect and then you have, you want to project or predict 

something. You assume a linear model and every data gives you, you know, one column so to 

speak or one row in your matrix then you keep building it up. When you have enough data for 

testing, enough data for training, on the training, you find the coefficient. On the testing you test 

how well you've done. So this is pretty good.  

(Refer Slide Time: 18:11) 

 

So for instance one, I mean people who know cricket very well will tell you I am ignoring some 

very important things when I look at my 𝑥, right? So maybe I have to add one more vector, one 

more data point to 𝑥 which could be maybe the number of wickets that have fallen up to the 10th 

over, isn't it? That could be a useful thing, you know? I mean, so maybe that number has to be 

added to the 𝑥, that data, if you can pick up and then maybe then you will improve this model, 

right? So even with the linear model with that added data, maybe this 14 can come down further, 

right? So this is the sort of thing that people do in machine learning, okay? So they think of what 

else to do, how else to do. Maybe linear is not a good function. If linear is not a good function, you 

go out of the realm of linear algebra. So that's not a course for us. But here is an example of this, 

okay? So this Colab workbook and all of this is shared with you. You can click on this I've 

embedded here. This file is with you. You can play around with this and see what I mean for sure 

and understand this. So this is very typical of how, this kind of idea is used in practice in machine 

learning applications. So hopefully that was interesting. So let's move on and try to look at this 

notion of orthogonal complement and projection, okay?  



So we've been studying orthogonal complement and we know that they are connected, right? So it 

is quite easy to see. If you have a subspace and if you have a projection operator and 𝑢 becomes 

the projection of a vector 𝑣, then this (𝑢 −  𝑣) actually belongs to the complement, right? So it is 

a very standard thing. So 𝑣 minus what you projected onto is orthogonal to the entire subspace, 

okay? So that is a very standard result in this projection. So now you notice this slight twist on 

this, okay? 𝑢 is the closest vector to 𝑣 if and only if (𝑢 −  𝑣) belongs to 𝑈⊥, okay? So this is also 

a statement. I didn't quite put it like this maybe when we studied orthogonal projection properly, 

but you can see that this is true, right? Out of all the vectors that are closest to 𝑣, right, I mean of 

all the vectors in 𝑈, the vector that is closest to 𝑣 is that one which will satisfy this. (𝑢 −  𝑣) has 

to be in the orthogonal complement, okay? Only then this will work out. The same orthogonality 

condition. So notice how this will subtly transform itself into something else, okay? So now how 

do you do this testing? How do you find if (𝑢 −  𝑣) is in 𝑈⊥ or not? It's not very hard, right? So 

you take any spanning set for 𝑈. I'm going to say spanning set, it could be a basis, but maybe not, 

I mean I don't care. Any spanning set for 𝑈. Then (𝑢 −  𝑣) is in 𝑈⊥ if and only if this inner product 

is 0, isn't it? So each of these spanning vectors inner product with (𝑢 −  𝑣) has to be zero. If that 

is true, then clearly you know this is in this 𝑈⊥. If this is in 𝑈⊥, this will also be zero. So this is an 

if and only if, okay?  
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Notice where we are going here. You will see this. We are going into an interesting direction as 

far as orthogonal complement is concerned. We had one way of doing the orthogonal complement. 

I will give you another way of thinking about the orthogonal complement. In other words, this 𝑢 



which was the orthogonal projection of 𝑣 onto the subspace 𝑈 is also the unique solution to these 

set of equations. You take any spanning set for 𝑈, it is the unique solution to < 𝑢𝑖 , 𝑢 > being equal 

to < 𝑢𝑖 , 𝑣 >, this inner product being zero for all of the vectors in the spanning set, okay? So this 

is another way of doing the projection. Instead of doing the projection, you know, you find the 

orthonormal basis and take the inner product and do that, you know? That I think is quite an easy 

process. You can also do something like this, but this is also the same, it's not anything different, 

right? So you go to an equation of this form, okay? So hopefully this was clear. It is just, we are 

just using the orthogonality in a very interesting way with a spanning set for 𝑈, okay? Because we 

know that you know (𝑢 −  𝑣) is in the complement, so you take a spanning set for 𝑈, then you get 

a set of equations and these are linear, you know? I mean this is all inner product so it's all linear. 

So it's very nice to write down, okay?  
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So now when you want to solve linear regression, there is an equation that you can write using 

this. This, the previous property that we studied, okay? Take a spanning set and do that, okay? So 

you have a 𝑚 × 𝑛, in the linear regression setting you have 𝑚 × 𝑛 matrix 𝐴. I am picking it as real 

for this purpose but you can even, extending to complex is also very easy. 𝑏 could be a real vector, 

𝑏 is a real vector. I am going to define 𝑈 as the range of 𝐴, okay? It’s the range of 𝐴. This is the 

subspace 𝑈 which we have been trying to project on to, right? So let us say 𝑎𝑖 is the ith column of 

𝐴. So notice, why am I worried about the columns of 𝐴? I am looking at range of 𝐴, so because 

this will give me a spanning set for 𝑈, okay? What is the spanning set for 𝑈? 𝑎1 to 𝑎𝑛, the columns 

of 𝐴, okay? So notice how I will move into this inner product thing. So the closest 𝐴𝑥 to 𝑏, okay, 



the closest 𝐴𝑥 to 𝑏. Remember 𝐴𝑥 is an element of 𝑈, right? Closest 𝐴𝑥 to 𝑏 satisfies (𝐴𝑥 −  𝑏) 

is in 𝑈⊥, right? This is a very simple little relationship that we have seen before, okay? Or, what 

did we see about how to check for (𝐴𝑥 −  𝑏) belonging to 𝑈⊥? The inner product of each of these 

columns of 𝐴 with (𝐴𝑥 −  𝑏) has to be 0, okay? These are all equivalent conditions. We know that 

all this has solutions, right? This projection exists, we know they can project. So all of these have 

solutions, there's no need to check anymore. So this inner product of 𝑎𝑖 with (𝐴𝑥 −  𝑏) has to be 

equal to 0 for every 𝑖. This is the same condition as projecting and solving, right? So there's no 

difference here. So in other words you write this for every 𝑖, which means every column inner 

product with (𝐴𝑥 −  𝑏) goes to zero. But how do I write every column? So I can simply write it 

as 𝐴𝑇 multiplying (𝐴𝑥 −  𝑏). Notice what happens if I do 𝐴𝑇. If you want I can write out what 𝐴𝑇 

will be. 𝐴𝑇 will simply be 𝑎1 here, 𝑎2 here, so on till 𝑎𝑛 here, isn't it? Right? Now I want to take 

inner product with (𝐴𝑥 −  𝑏). What is 𝑎1 inner product with (𝐴𝑥 −  𝑏)? So now I can write 

(𝐴𝑥 −  𝑏) here, right? This will be just a column vector. So this into this will give you every value 

being inner product and that has to be zero throughout, okay? So that's the same condition here. 

𝐴𝑇(𝐴𝑥 −  𝑏)  =  0. You see I keep writing zero on this side. Remember zero is, you know, you 

put as many zeros as you need on the column, okay? So that's how you think about it. So this other 

thing, the same thing now you know. You just multiply it out, you get this very interesting looking 

equation 𝐴𝑇𝐴𝑥 =  𝐴𝑇𝑏, okay?  
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And how do I know that this equation always has a solution? Of course it has to, right? It is the 

same as the orthogonal projection. Orthogonal projection exists, so definitely this equation will 



have solutions, okay? So a nice little, nice looking equation which you can directly look at from 

these. So a solution always exists. There are various ways to show that a solution always exists 

even if you do not like the inner product approach. We will do that later on for the equations like 

this. But when you have inner products and when you have projections, a solution will always 

exist for this by the orthogonal projection that we are looking at, okay? So this is another way of 

thinking of linear regression. You'll see a lot of… So in fact if you start with, you know, so if you 

start with ‖𝐴𝑥 − 𝑏‖2 and minimizing over x and if you do calculus… What is calculus? You 

differentiate with respect to 𝑥, 𝑥𝑖 and equate to zero, you will get the same equation, okay? So that 

is another way in which people come to this 𝐴𝑇𝐴𝑥 =  𝐴𝑇𝑏. We came to it using our orthogonal 

projection but all of them are the same, okay? So there can be very very many ways to solve the 

problem, but at the end of the day they solve the same problem in one way or the other, okay? So 

thank you very much for listening up to this point. We will look at another application in the next 

lecture which is quite interesting in its own right but it is very different from this application, okay? 

See you then. 

 


