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Properties of Adjoint of a Linear Map 

Hello and welcome to this lecture. We're going to continue what we studied in the previous 

lecture where we defined adjoint of a linear map. So in this lecture we are going to start looking 

at properties of adjoint and this adjoint will play quite an important role in all that we are going 

to study later in this, in the remainder of this course, classifying operators etc. But right now we 

are still looking at linear maps, the more general linear maps and what does it mean to work with 

the adjoint, what kind of properties it satisfies and all that, okay? So let's get started.  
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A quick recap. I think the first part I'll quickly go through. And we're really looking at adjoint 

right now. We are in inner product spaces, we are considering orthogonality, orthonormal basis 

and that’s resulted in quite a few simplifications. In particular the definition for adjoint of a 

linear map has this very nice characterization in terms of what it does with the inner product, 

right? So you have a vector 𝑣 which is taken to 𝑇𝑣 by a linear map 𝑇. And then if you have a 𝑤 

which is another vector in 𝑊 in the range of… Not in the range of 𝑇 but in the other, second 

subspace into, the second vector space into which you are going, that one. And if you look at the 



inner product of 𝑇𝑣 and 𝑤, it turns out there is always a 𝑇∗, this one adjoint operator which can 

take 𝑤 to the original vector space 𝑉. And on that the inner product is sort of preserved.  

< 𝑣, 𝑇∗𝑤 > is the same as the < 𝑇𝑣, 𝑤 > itself, okay? So that picture that you have with the 

adjoint is very interesting and this gives a lot of nice properties for the adjoint, okay? So let's see 

what those properties are.  

So to clearly explain these properties, we’ll look at three different finite inner product spaces. 

They are all over the same field ℝ or ℂ. And the first property is quite easy to see why this 

should be true. We will prove all of these, at least one or two I'll show you the proof. The method 

is very similar in proof but these are all sort of intuitive, given the linearity of the whole thing, all 

this should work out, right? So if you look at the sum of two operators, 𝑆 and 𝑇 are two operators 

from 𝑉 to 𝑊 and you look at the operator… I should say linear map, okay, so let me not say 

operator. 𝑆 and 𝑇 are two linear maps from 𝑉 to 𝑊 and you look at the linear map 𝑆 + 𝑇, okay? 

And then you ask what will be its adjoint, okay? It turns out that is equal to 𝑆∗ + 𝑇∗, okay? So 

this is linearity for the adjoint. Additivity for the adjoint. The second one shows a slightly 

different property with respect to homogeneity. If you take an operator, a linear map 𝑇 and you 

scale it by 𝜆, and you look for the adjoint, it turns out it is �̅�, there is that conjugate, pay attention 

to that, there is conjugate here, it's a small little bar on top of lambda, but that makes a 

difference. So �̅� times the adjoint of 𝑇, okay? For any 𝜆. So of course if you are in a real space, 

then this �̅� will become 𝜆, there's no problem there. But if you are in a complex vector space, 

then this �̅� will matter, okay? And then if you take the adjoint of 𝑇 and ask what is its adjoint, 

okay, so you can do… I mean 𝑇∗ is after all a linear map from 𝑊 to 𝑉. Of course you can ask for 

the adjoint of that operator. It turns out you go back to the original operator 𝑇, okay? Original, I 

keep saying operator, to this original linear map, okay? So in the more general world of, in the 

linear map which goes from 𝑉 to 𝑊 and not necessarily an operator which goes from 𝑉 to 𝑉, 

okay?  

Identity operator. Now we are an operator. It is an operator. It goes from 𝑉 to 𝑉 or 𝑊 to 𝑊 or 

anything. The adjoint of the identity is identity itself. These are all easy to see, you know? 

Identity does nothing. So the inner product should also do nothing, okay? Inner product will be 

preserved just by itself. And here's an interesting property. If you have two operators 𝑆 and 𝑇 

which you can compose, okay, you can compose in this fashion, 𝑆 and 𝑇… So notice what's 

going on. 𝑇 takes you from 𝑉 to 𝑊 and 𝑆 will take you from 𝑊 to 𝑈 so 𝑆𝑇 is well defined, 

okay? So you can look at 𝑆𝑇 which will be an operator from 𝑉 to 𝑈, isn't it? I keep saying 

operator, but it's a linear map, okay? So 𝑆𝑇 is a linear map from 𝑉 to 𝑈, okay? Now you can ask 

definitely the question of what is the adjoint of 𝑆𝑇. It turns out that is equal to another 

composition here but in the reverse direction, okay? You can do adjoint of 𝑇 and then… 𝑆(𝑇). 

So, as in, 𝑆∗(𝑇∗), okay? So this is the relationship, the order reverses, but the adjoint works and 

you can see this composition is well defined, right? 𝑆∗, 𝑆 adjoint is from 𝑈 to 𝑊, okay? And 𝑇 

adjoint is from 𝑊 to 𝑉. So 𝑇∗𝑆∗ actually from 𝑈 to 𝑉, okay? 𝑆𝑇 is from 𝑉 to 𝑈 and 𝑇∗𝑆∗ is from 



𝑈 to 𝑉 and that is correct, okay? That is the correct way in which the adjoint will work, all of that 

works out, okay?  
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So I am not going to prove all of these, I will prove maybe, I think I have written down proof for 

one and two. I'll just quickly walk you through it. The philosophy is always the same. The proof 

for this adjoint property always uses that inner product relationship, right? So I have this 

(𝑆 +  𝑇)∗, what property do I know it satisfies? An inner product with 𝑣 with the (𝑆 +  𝑇)∗𝑤 is 

always going to be equal to the inner product of (𝑆 + 𝑇)𝑣 and 𝑤, right? So this is the starting 

point, okay? Then once you come to this world where there is no adjoint, you use all the 

properties you have. Or even if there is adjoint, split out, you use all the properties of the inner 

product, right? (𝑆 +  𝑇)𝑣 is 𝑆𝑣 +  𝑇𝑣, so since inner product is additive in the first argument, 

you will get < 𝑆𝑣, 𝑤 >  + < 𝑇𝑣, 𝑤 > and then you use that adjoint property on each of these 

things, right? Individually. Now that you come to individual, you can use the adjoint property 

there. So this first < 𝑆𝑣, 𝑤 > is < 𝑣, 𝑆∗𝑤 >. < 𝑇𝑣, 𝑤 > is < 𝑣, 𝑇∗𝑤 >. Now you use the 

additivity in the second argument and you will get < 𝑣, (𝑆∗ + 𝑇∗)𝑤 >. So if you look at the first 

and the last now, okay, you compare the first and the last, you have your equality, okay? So 

(𝑆 + 𝑇)∗ is 𝑆∗  +  𝑇∗. Is that okay? So you have that whole relationship, okay? So just go 

through this proof and convince yourself that every step was valid, that I have not made any 

mistake and check for yourself that this whole thing is true.  



So now when, once you have a relationship like this, this (𝑆 + 𝑇)∗ operator should be equal to 

𝑆∗ + 𝑇∗ , right? So think about why that is true also. You can sort of prove that to be true. You 

can bring it to this side and show that that operator has to be zero, okay? So it's not too bad, it's 

true for all 𝑣 so this has to be true, okay? Okay. So now look at the next one. The second is the 

proof for the claim 2 here. And here again we are looking at (𝜆𝑇)∗𝑤. I mean whole adjoint. So 

we start with this inner product < 𝑣, (𝜆𝑇)∗𝑤>, then you use the property here. So this is going to 

be equal to the inner product < 𝜆𝑇𝑣, 𝑤 > and you can pull the 𝜆 out and you get < 𝑇𝑣, 𝑤 >. 

And < 𝑇𝑣, 𝑤 > you know is < 𝑣, 𝑇∗𝑤 > and then you take 𝜆 into the second argument. When 

you take it into the second argument, you have to do �̅�, right? So that's how we define the inner 

product. So you get (𝜆𝑇)∗𝑤 okay? So this now again you can compare these two guys and you 

quickly identify that (𝜆𝑇)∗ is equal to �̅�𝑇∗, okay? So that's the proof. The other three I will leave 

it as an exercise, you have to write very similar proofs, everything will work out in the exact 

same way and you will be able to identify, the you know, what happens when you do adjoint of, 

you know some modified linear map, how does it relate to the adjoint of the original linear maps, 

okay? So you can do all this. So these are good properties to keep in mind. So this additivity, 

homogeneity, sort of conjugate homogeneity properties and repeated adjoint, what happens, all 

of this is easy to... You should remember this because it will come handy quite often.  

Okay. So more properties. So adjoint we know is a linear map, right? It's a, if 𝑇 is a map from 𝑉 

to 𝑊, 𝑇∗ is a linear map from 𝑊 to 𝑉. So of course it has the null space, range space all these 

other routine properties that we have for a linear map, okay? And it turns out those spaces are 

related to the similar spaces for the original operator 𝑇, okay? And those relationships are 

captured here, okay? So this orthogonal complement will enter the picture and you can see it 

plays a big role here. Look at the first result for instance. It says… So it's good when you look at 

a result like this to also think of what vector space each of these things are a subspace of. And, I 

mean, just think about that because sometimes it can be a bit confusing, so we should be clear on 

that. So 𝑛𝑢𝑙𝑙(𝑇∗) is actually a subspace of 𝑊, right? So range 𝑇 is also a subspace of 𝑊. So 

𝑛𝑢𝑙𝑙(𝑇∗), null of the adjoint of 𝑇 which is a subspace of 𝑊 is equal to, apparently, we will prove 

this, but this is a property here, it's equal to the orthogonal complement of (range of T). So 

clearly this is also a subspace of 𝑊 so it's quite believable that this might be true. And one can 

see, we’ll prove that this is exactly true. So the null of adjoint is equal to the orthogonal 

complement of the range, okay? So these are all, so this adjoint and the original operator are tied 

together in a very strong way through this inner product and so it's sort of believable that these 

things happen, okay? And there is a very precise relationship here, right? So null, remember null 

is something that makes the subspace which is orthogonal to, you know, to 𝑇 in some way, right? 

So it's not difficult to imagine that this kind of property ends up being true, okay? So we will see 

how this works out. We will prove this, you will see it.  

And similar properties are true. So in fact I mean once you see one is true, you know one and 

three are related, right? What is three? How do you get three from one? Simply put 𝑇 equals 𝑇∗, 

okay? If you put 𝑇 =  𝑇∗ in one you will get three, okay? Isn't it? So three is not a new result. 



Three is simply a, you know corollary to one, okay? And in fact even two or maybe four, even 

two is sort of related to… Maybe not two but, you know, so all these guys are related. So you 

can do, yeah one and four. If you look at one and four, these are also the same thing, right? See if 

you take complement on both sides, if you put 𝑇 equals 𝑇∗, from one you get three and if you 

take, if you put complement on both sides, you take complement on both sides, you simply get 

range 𝑇 equals (𝑛𝑢𝑙𝑙 𝑇∗)⊥, right? So you have taken complement on both sides, ((𝑟𝑎𝑛𝑔𝑒 𝑇)⊥)⊥  

will become range 𝑇 itself and you will get (𝑛𝑢𝑙𝑙 𝑇∗)⊥. So four is actually simply a restatement 

of one. Remember three was a restatement of one, four is also a restatement of one. Now once 

you have four, you simply put 𝑇 = 𝑇∗, you will get two, okay? So, right? If you put 𝑇 =  𝑇∗ in 

four, you get two. So these one, two, three, four, even though they all look very different it's just 

only one relationship, it's enough you remember one of them, whatever one you prefer, your 

favourite one, you remember one of them, everything else is obtained by either complementing 

or putting 𝑇 =  𝑇∗, okay? So as long as you remember that, this is okay. All right?  

And here is this other nice relationship. The range of 𝑇 and range of 𝑇∗ have the same 

dimension, okay? So this is another thing that we will see. This is actually, you know, if you take 

one of these results and use the Fundamental Theorem, I think two, you can take two for instance 

and use the Fundamental Theorem along with the dimension, this property, you will get the 

answer. So it's not very hard to prove this result, but it's good to, you know, take any one of these 

results. You'll get it. So it's just a question of using this but maybe a slightly non-obvious 

property that range of 𝑇 and range of 𝑇∗ have the same dimension. We will relate it to something 

else also later on. But this is interesting to see. So these are nice connections between null space, 

range space and various dimensions for 𝑇 and 𝑇∗, okay? So notice this. So range of 𝑇 and range 

of 𝑇∗ have the same dimension, okay? So it's an interesting relationship. So let's do a quick proof 

for these things. I will prove the first one, okay? The first one is what's being proved here, okay? 

Proof is for the first result and all the others will quickly follow. You will see it is quite easy to 

see, okay? So to show this, I will start with a vector which is in null of 𝑇∗, okay? 𝑇∗ is, 

remember, is the adjoint. It is an operator, it is a linear map from 𝑊 to 𝑉. And null of 𝑇∗. 𝑤 is a 

vector in null of this linear map. Which means what? That's true if and only if, I keep doing the 

sequence of if and only ifs, 𝑇∗𝑤 is zero, right? Right? That's sort of the definition. So this 𝑇∗𝑤 

zero you can also write in an inner product form. So this inner product form is very important. 

This is true if and only if < 𝑣, 𝑇∗𝑤 > =  0 ∀𝑣 ∈ 𝑉, okay? It's not too difficult to imagine. So you 

say you take a 𝑤, you know, 𝑇∗𝑤 itself becomes zero. So clearly < 𝑣, 𝑇∗𝑤 > will be equal to 

zero for all 𝑣 ∈ 𝑉, right? So this is okay. Now once you have this, look at what happens when 

you use the property of the adjoint. Here is where the property of the adjoint comes in. So crucial 

step, right? Up to this it's all trivial, < 𝑣, 𝑇∗𝑤 > =  0, yeah I mean of course if this is zero, it just 

works out. If it is zero for all 𝑣, then 𝑇∗𝑤 also has to be zero, right? So we know how the inner 

product works. That's how it is. So this, this switch is what's critical. Notice what happens <

𝑣, 𝑇∗𝑤 > by the property of adjoint becomes < 𝑇𝑣, 𝑤 >, okay? So this 𝑤 belongs to null space 

of 𝑇∗ if and only if 𝑤 inner product with any vector in the range of 𝑇, 𝑇𝑣 right, 𝑇𝑣 for all 𝑣 in 𝑉 



is what? Any vector in the range of 𝑇, right? This has to be zero. All right? So this is where the 

crucial thing comes in. And if this has to be 0, then clearly, you know, 𝑤 belongs to (range 𝑇)⊥, 

right? So every vector in the range of 𝑇 is orthogonal to 𝑤 if 𝑤 ∈ 𝑛𝑢𝑙𝑙(𝑇∗). And it’s all if and 

only if you can go the other way also, okay? So 𝑤 belongs to 𝑇∗ if and only if 𝑤 ∈ (range 𝑇)⊥. 

And notice how this nice relationship came about because of this property of the adjoint, okay? 

So this is important to note, okay? So clean little proof. But, you know, go and think about what 

it is, maybe draw a couple of pictures if you like to understand where this came from. But this is 

true. So 𝑛𝑢𝑙𝑙(𝑇∗) is : (range 𝑇)⊥, okay?  
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So the other proofs can quite easily be done. I think I illustrated the next part. How do you get, 

once you get 1, how do you get, you know, 4 from 1? Which is just the complement. 3 is setting 

𝑇 as 𝑇∗ and 2 is the complement of 3, yeah. So 2 is the complement of 3. You can also see 2 as 

setting 𝑇 equals 𝑇∗ in 4, okay? Both of them are possible. So others are easy to prove once you 

prove 1, okay? For 5 I have said use Fundamental Theorem of linear maps on 3. Yeah. You can 

use it on 3 if you like, you can use it on 2 if you like, you can use it on one of these two and you 

will get it. So let me maybe show you how that is happening here. So I have said 3. So if you use 

this, so this tells you 𝑛𝑢𝑙𝑙(𝑇), 𝑛𝑢𝑙𝑙(𝑇) is a subspace of 𝑉, right? So dim 𝑉 − dim(range 𝑇), 

right? So that is dimension of 𝑛𝑢𝑙𝑙(𝑇). That equals range(𝑇∗). So range(𝑇∗), remember 𝑇∗: 𝑊 →

𝑉. So range 𝑇∗ is a subset of 𝑉. So the dual of range 𝑇∗ will have again dimension which is this, 

okay? So you can cancel dimension of 𝑉 and you will get dim range 𝑇 = dim range 𝑇∗, okay?  



So looking at this relationship you may be tempted to think that dim 𝑛𝑢𝑙𝑙 𝑇 is also equal to 

dim 𝑛𝑢𝑙𝑙 𝑇∗. That need not be true. You can see that none of these results will give you that, it 

won't work out because dim 𝑉 and dim 𝑊 can be different, okay? That is a problem. If dim 𝑉 

were equal to dim 𝑊, then you can say other things as well, but in general that need not be true. 

But whatever be the case, range of 𝑇 and range of 𝑇∗ will have the same dimension, okay? So 

that's the proof that we have done, okay? So these are good properties. So if you notice the 

previous slide, we saw properties on, you know, manipulating up linear maps and what happens 

to the adjoint. And now null spaces, range spaces. There's some powerful results for adjoint and 

𝑇. So adjoint and T are sort of strongly connected, they are very similar to each other in some 

fundamental ways.  

Okay. So now what is the connection between matrix representation of linear maps and adjoint, 

okay? What is the matrix of the adjoint. How is it connected to matrix of the original linear map, 

okay? So this might be a question that’s of great importance and it turns out there is a very 

simple and nice answer. If you have matrix representation with orthonormal basis for both 𝑉 and 

𝑊, the adjoint of a linear map 𝑇 is, the matrix representation is simply given by conjugate 

transpose, okay? So it's a very simple answer and it also has a bearing on many of the previous 

results we discussed. So it's nice to look at, okay? So I've captured that here. But the orthonormal 

basis is very very very important. Usually we use standard basis. So it's always true. But if you're 

not using an orthonormal basis, then this result of conjugate transpose is not true, okay? So 

remember that, okay? So let's see how that is developed. So once again we have two finite 

dimensional inner product spaces and an operator 𝑇, a linear map 𝑇: 𝑉 → 𝑊 and we have two 

orthonormal bases, one for 𝑉 and one for W, okay? I have used 𝑛 and 𝑚 as the dimension, okay? 

The matrix of 𝑇 with respect to 𝐵𝑣 and 𝐵𝑤 is, we will denote it as 𝑀(𝑇, 𝐵𝑣, 𝐵𝑤) just to say 𝑉 has 

basis 𝐵𝑣, 𝑊 has basis 𝐵𝑤 and then the matrix 𝑀, this represents this operator 𝑇 with respect to 

those two bases, okay? So here's the big result. The matrix for the adjoint of 𝑇 with 𝐵𝑤 as the 

basis of 𝑉, remember 𝑇∗ will go from 𝑊 to 𝑉 okay, with 𝐵𝑤 as a basis for 𝑊 and 𝐵𝑣 as the basis 

for 𝑉… So notice the reverse thing there that will also happen. That is simply equal to the 

conjugate transpose of the original matrix we had for 𝑇 itself. So what is conjugate transpose of a 

matrix? You transpose it, make every row column, do the row column interchange and you 

conjugate each element, do a complex conjugate of each element. Of course, if your field is real 

then the conjugation will have no impact, only the transpose matters. But if the field is complex, 

the conjugation will have a change in the entries, okay? So this is something to keep in mind.   

Okay. So proof is not too complex. I have written it down here. I will quickly walk you through 

it and I'll let you think about it. It's quite an easy proof. If you look at the (𝑖, 𝑗)𝑡ℎ entry of the 

matrix 𝑀(𝑇, 𝐵𝑣, 𝐵𝑤), okay, what do I do? So notice what is 𝑀(𝑇, 𝐵𝑣, 𝐵𝑤). So if you look at the 

column, you have [𝑇𝑒1, … , 𝑇𝑒𝑗 , … , 𝑇𝑒𝑛], okay? So each column the jth column is 𝑇𝑒𝑗 . 

Coordinates in what basis? In 𝐵𝑤, right? So you find 𝑇𝑒𝑗 and find its coordinates in the basis 𝐵𝑤 

and write it as the jth column. So what will be the ith entry? Remember ith row, if ith row were 



here, what will be the ith entry here? It is the coordinate of 𝑇𝑒𝑗 for 𝑓𝑖 isn't it? Now 𝑓𝑖 is, this 𝑓 is 

an orthonormal basis. So what is that coordinate? Inner product < 𝑇𝑒𝑗, 𝑓𝑖 > okay? So you can 

see that just neatly works out as < 𝑇𝑒𝑗 , 𝑓𝑖 >. So notice how this orthonormality is very very 

crucial. Otherwise you won't get this inner product formula for the entry there, okay? So this is 

important. So now you use all that you know about adjoint, okay? So < 𝑇𝑒𝑗 , 𝑓𝑖 > is the same as 

inner product < 𝑒𝑗, 𝑇∗𝑓𝑖 >, right? And then you do the conjugation. It’s (< 𝑇∗𝑓𝑖 , 𝑒𝑗 >)
∗
 whole 

conjugate, okay?  
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All right. Now what about the (𝑗, 𝑖)th entry of 𝑀(𝑇∗, 𝐵𝑤, 𝐵𝑣), it is the same thing, okay? So this 

thing is the exact same thing, right? See (𝑇∗, 𝐵𝑤, 𝐵𝑣) will be 𝑇∗𝑓𝑖. I am looking at (𝑗, 𝑖)th entry, 

right? So 𝑇∗𝑓𝑖 inner product with each and so you see the (𝑖, 𝑗) becomes (𝑗, 𝑖), this entry 

becomes its conjugate. So that is where you get, the conjugate transpose, okay? So simple proof, 

but nevertheless it's a good idea, a good thing to go through this proof once again. You will 

understand the mechanics of it a little bit better, okay? So transpose, conjugate transpose and this 

adjoint operation are very very closely and intimately connected. And if you go back and 

interpret the previous result, we had a null and range space in terms of the four fundamental 

subspaces of the matrix, this notion of transpose will become very clear to you, connection 

between transpose and adjoint will become clear to you. So let's do that, let's look at adjoint and 

four fundamental subspaces of a matrix. We'll pick a matrix 𝐴 which is 𝑚 × 𝑛 over ℝ. I'll take ℝ 

just for simplicity, or ℂ also there are similar statements which are true. Let's say it represents a 

linear map 𝑇: ℝ𝑛 → ℝ𝑚 with respect to standard basis. Notice I am saying standard basis. This is 



very important. If you change the basis here, all that I say will not be true, okay? Very important 

to keep in mind, okay?  

So 𝑇∗ now I know is a linear map from ℝ𝑚 → ℝ𝑛 and it is represented by the conjugate 

transpose 𝐴 or 𝐴𝑇̅̅̅̅ , I can put a notation like that. But since entries of 𝐴 are real, you can say the 

conjugation is irrelevant. So it’s simply 𝐴𝑇. Once you have that, you can go back and look at 

how these, you know, spaces are related and you will see the very natural thing that is happening 

with respect to the matrix, right? Range of 𝑇∗ is the column space of 𝐴𝑇 and that is nothing but 

the row space of 𝐴 and clearly that is the null of 𝐴⊥ right? The dual of the orthogonal 

complement of the null of 𝐴, okay? Now null of 𝑇∗ is the null of 𝐴𝑇. That is left null of 𝐴 and 

that is the (column space of 𝐴)⊥ whole complement, okay? So the same things, the same thing 

we had on, you know, range of 𝑇 and null of 𝑇∗ and all those connections clearly plays out and 

gives you a very nice grasp if you look at it in terms of four fundamental subspaces of the matrix, 

okay? It’s 𝐴 and 𝐴𝑇, rows become columns. If you look at null, the null will be a complement for 

the row space, left null will be a complement for the column space, that's it, okay?  
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And what about this relationship, that dimension of range of 𝑇 should be equal to dimension of 

range 𝑇∗? That is nothing but row rank equals column rank, right? Range of 𝑇∗ is nothing but the 

row space, range of 𝑇 is the column space, both of them have the same dimension. Row rank 

equals column rank and that gets reformulated as dimension of range 𝑇 equals dimension of 

range 𝑇∗, okay? I think maybe that point I have not written down, maybe it’s worth writing 



down. Dimension of range 𝑇∗ equals dimension of range 𝑇 is exactly equivalent to dimension of 

column space… Okay, maybe I should write row space first. Row space of 𝐴 equals dimension 

of column space of 𝐴 which is nothing but row rank equals column rank, okay? The familiar 

result that we proved using another trick in the previous, one of the previous lectures you can see 

when you define adjoint in a very clear fashion, okay? So this sort of gives you a feel for what 

adjoint is, its connections with the matrices we have been talking about. Notice this important 

thing is the orthonormal basis. This adjoint thing works very well only when you work with 

orthonormal bases. If you change basis you have to do something more to find the adjoint, it's 

not very obvious or easy, okay? So keep that in mind. 

Okay. So now let us move on and study slightly more advanced notions for the adjoint. Like I 

said, the adjoint plays a very important role and to do all that, we will need to look at what 

happens when two operators are composed. In particular, what happens to the null spaces. We've 

been looking at it in some exercises and applications we have been talking about. If you have a 

product 𝐴𝐵, what is null of 𝐴𝐵 in as a function… I mean, what is the connection between null of 

𝐴𝐵 and null of 𝐵, null of 𝐴 etc. etc. So let us formalize that first and that will play a key role 

when we study more advanced things with adjoint also, okay? So let us say, we are back to linear 

maps now, you have a linear map 𝑇: 𝑉 → 𝑊 and another linear map 𝑆: 𝑊 → 𝑈. Now 𝑆𝑇 is a 

composition of the two maps and it will take you from 𝑉 to 𝑊, right? That's also a linear map. 

We know that. Now the crucial thing we want to study is how is the null space of 𝑆𝑇 connected 

to the null space of 𝑆 and null space of 𝑇, that's what I want to do, okay? So here is the crucial 

result. I think I have alluded to this in earlier discussions, but let me just formally write it down. 

Let us define a new subspace. This is a subspace of 𝑊, okay? Remember 𝑆𝑇 takes you from 𝑉 to 

𝑈, but it goes through 𝑊, right? And in that 𝑊 in the middle I am going to define a subspace. 

What is this subspace? It is the range of 𝑇, which clearly is a subspace of 𝑊, intersect with null 

of 𝑆, okay?  

So range of 𝑇 is a subspace of 𝑊, null of 𝑆 is again a subspace of 𝑊, okay? So clearly their 

intersection will again be a subspace. So that subspace I am calling as 𝑁𝑤, okay? So some 𝑁𝑤, 

okay? This subspace is very important, this will play a crucial role in how to determine null of 

𝑆𝑇, okay? So in particular here is the relationship, okay? The dimension of null of 𝑆𝑇 equals 

dimension of null of 𝑇 plus dimension of this 𝑁𝑤, okay? So this is the important relationship, 

okay? And sort of makes sense in so many different ways. I will draw a picture soon enough to 

clarify this. But let us go through and try and prove this first in some fashion and we'll 

understand. So maybe I should draw a picture right way before we… Or maybe I should wait for 

the proof to come out and then I'll draw it, okay? So, so the first step in the proof is to figure out 

how this 𝑁𝑤 enters the picture, right? So you will see how this 𝑁𝑤 enters the picture here. 

Supposing I give you a vector 𝑣 which is in the null space of 𝑆𝑇, okay? What do I know? 𝑆𝑇𝑣 

equals zero, right? And that is if and only if 𝑇𝑣 ∈ 𝑛𝑢𝑙𝑙(𝑆), okay? So this is the crucial 

relationship here. 𝑇𝑣 has to be, so 𝑆𝑇𝑣 = 0 means 𝑇𝑣, right, after you did 𝑇𝑣 has to be in the 

null of 𝑆, right? Only then 𝑆𝑇𝑣 = 0. These are all basic definitions. Now remember 𝑇𝑣 is in the 



null of 𝑆 but 𝑇𝑣 clearly is also in range of 𝑇, right? 𝑇𝑣 by definition is in range of 𝑇, it also has 

to be in null of 𝑆. So if 𝑣 is such that 𝑣 is in null of 𝑆𝑇, then 𝑇𝑣 must be in range of 𝑇, obviously 

but it should also be in null of 𝑆. So what does that mean? 𝑇𝑣 is in the intersection of these two. 

So 𝑇𝑣 has to be in 𝑁𝑤, okay? So this is how this 𝑁𝑤 enters the picture and it plays a very 

important role, okay? So I will draw a picture soon, but let us just bring up the rest of the proof 

and then I will draw the picture.  
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So from this argument, we clearly see that null of 𝑆𝑇 is the set of all 𝑣 such that 𝑇𝑣 ∈ 𝑁𝑤, okay? 

So this is crucial. There is nothing else in the null of 𝑆𝑇, right? If 𝑣 is in null of 𝑆𝑇, this is all if 

and only if, if and only if, if and only if. It all works out like this. Is that okay? So think about it. 

Null of 𝑆𝑇 is the set of all 𝑣 such that 𝑇𝑣 ∈ 𝑁𝑤. From this it comes out, okay? So we will start 

thinking of basis for null of 𝑆𝑇. See, for looking at dimension we need to look at bases. I think at 

this point maybe I should draw the picture. It will be helpful I think. So this picture has three 

subspaces. There is 𝑉, and then there is 𝑊. I will draw it a bit bigger so that a lot of action 

happens in 𝑊. And then you have 𝑈, isn't it? So 𝑉 is the first vector space. This 𝑇 operates from 

𝑉 to 𝑈, and then you have 𝑆 operating from 𝑊 to 𝑈, 𝑉 to 𝑊, 𝑇 operates from 𝑉 to 𝑊 and 𝑆 

operates from 𝑊 to 𝑈. You have these two subspaces here, interesting ones, there is this range of 

𝑇 and let us say there is this null of 𝑆, okay? And then you have this nice little intersection here 

which maybe I will draw in some green. This is 𝑁𝑤, okay? You will also have other interesting 

subspaces, right? You will have null of 𝑇, will be here, okay? And you know how this operator 

works, right? So under 𝑇 what is going to happen? The whole 𝑉 will go to range 𝑇 and null will 



go to just one point here, right? So this zero will be somewhere here and this whole null will go 

to that point, okay? So keep that in mind, okay? Hopefully you can see that. And then what 

happens when I go from, you know, 𝑊 to 𝑈? Remember once I do 𝑆𝑇, I start with a 𝑣 here, I 

will only come to range of 𝑇, whatever is outside of range of 𝑇 is irrelevant to me and this 𝑆 

when it operates I can restrict it to range of 𝑇, right? And then this range of 𝑇 will take me to 

something here, okay? This will be a subset of range of 𝑆, okay? Which is where you will go. 

And this guy will take me to the 0, isn't it? This 𝑁𝑤 will take me to 0 when I restrict it to this, 

okay? So when I want to look at null of 𝑆𝑇, I am looking at the subspace of 𝑉 which takes me to 

𝑁𝑤, right? Subspace of 𝑉 which takes me to 𝑁𝑤. So what will that be? So now if you look at any 

other point here, some other point here, what will that come from? That will come from a 

translate of null of 𝑇, right? So there will be a translate here, okay? So maybe I can draw it like 

this, okay? So that will take you to this any other point, isn't it? So there will be similar 

translates. I am just drawing it grossly out of proportion, but you can still see for every point here 

there will be a translate here, isn't it? So all of these guys will take you to this subspace 𝑁𝑤 in 𝑊 

and I have to just characterize that. What is this subspace here, what is this null of 𝑆𝑇, which is 

the set of all 𝑣 such that 𝑇𝑣 takes you to 𝑁𝑤.  
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So how do I do this? This is not very hard if you visualize this a little bit. I am not going to be 

too detailed on this, I'll just provide the final answer in some sense, okay? So first thing you will 

have is a basis for null 𝑇, okay? Everything in null 𝑇 will definitely take you inside the 𝑁𝑤. It 

will take you to 0, there's no problem. What about other things? For that let me look at this very 



closely. I'll come up with the basis for 𝑁𝑤, okay? I'll call it {𝑤1, … , 𝑤𝑟}, okay? 𝑟 could be the 

dimension of, okay, I've said 𝑅 here, it's not 𝑅, sorry, it’s 𝑁𝑤, sorry about that, okay? So this is 

the basis and I will try to find solutions in 𝑉 for this equation 𝑇𝑣 = 𝑤𝑖, okay? So what is that 

solution? It is 𝑣𝑘+𝑖. Just one solution let us say, okay? So you take 𝑣𝑘+𝑖 such that 𝑇𝑣𝑘+𝑖 = 𝑤𝑖. 

This is true for 1 to 𝑟. Now why do I do, how do I know that the solution definitely exists? How 

do I know that the 𝑣𝑘+1 will definitely be there? It's, you know, 𝑤𝑖 actually belongs to the range 

of 𝑇, okay? So definitely there should be at least one 𝑣𝑘+𝑖. So you take your favourite 𝑣𝑘+𝑖, does 

not matter what it is, you take that. So you collect all these vectors in 𝑣, just one vector in 𝑣 

which will take me to the basis vector of 𝑁𝑤, okay? Now my claim, here is the claim, okay? So 

maybe I should do this here also, this is 𝑁𝑤. This is the claim, the basis for null of 𝑆𝑇 is simply 

the original, the basis for null 𝑇, 𝑣1 to 𝑣𝑘 and then this new 𝑣𝑘+𝑖 that I have, 𝑣𝑘+1 to 𝑣𝑘+𝑟. That's 

the basis for null 𝑇, okay? This needs a little bit of proving and I am not going to prove that for 

you in detail in this lecture. I will let you think about it.  
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But it’s sort of intuitive from the picture I drew in the previous slide. You can sort of figure out 

why this should be true. You take a basis vector for, basis for 𝑁𝑤, figure out solutions for the 

equation 𝑇𝑣 equals the basis vector and add it to the null vectors, null basis. You should get the 

basis for null of 𝑆𝑇, okay? So I will leave out some technical aspects of the proof to you. If you 

are interested you can fill it out. Otherwise also it’s okay. But the most important result is this, 

okay? This 𝑁𝑤 is naturally entering the picture in 𝑊 and the dimension of null of 𝑆𝑇 is 

dimension of null of 𝑇 plus dimension of 𝑁𝑤. And the basis is formed in this fashion. And from 



here you can see, you know, dimension of null of 𝑇 comes in and dimension of 𝑁𝑤 comes in 

after that, okay? So that picture is very important. You have 𝑉 here and you have this 𝑁𝑤 here 

and 0 in 𝑈, right, comes only through this 𝑁𝑤, right? So and then that's the connection. And how 

do you get to 𝑁𝑤? You can either come from the null space or you can come from other parts of 

𝑉 which will take you inside 𝑁𝑤. And how do you solve for the set of all 𝑣 that takes you to 𝑁𝑤? 

You can take a basis for 𝑁𝑤, find individual solutions and put them together, you will get a basis 

for the subspace that you are interested in, okay? So that part needs a little bit of proving and I’ll 

let you do the proving yourself, okay? So this picture is very important and this will play a key 

role in several of our proofs later on. And it's also good to know that what happens when you 

compose two linear maps, how do you think of the null space. It gives you a lot of interesting 

ideas, okay?  
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So there is a special case of this which is very important, okay? When you compose two 

operators, as before, there is an operator from 𝑉 to 𝑊, there’s an operator from 𝑊 to 𝑈, you 

compose it, 𝑆𝑇, you get operator, you get a linear map from 𝑉 to 𝑈. I keep saying operator 

operator operator. So it's, again it's compositions of linear maps, it's not really operator, okay? So 

you may want to replace this with linear maps, okay? So I keep saying this operator all the time 

but you know, keep a flexible definition in your mind. When I say operator, it could be a linear 

map also, okay? So that's okay. So anyway, what is this special case? This is the special case, 

okay? So a very special situation is when range of 𝑇 and null of 𝑆 do not intersect, okay? So in 

the previous picture we saw that range of 𝑇 and null of 𝑆 intersected in a big way. The special 



case is when they intersect only at zero, okay? So they are sort of disjoint mostly except for that 

zero, okay? In that case, null of 𝑆𝑇 equals null of 𝑇, okay? So there is nothing else, right? 𝑁𝑤 is 

only zero, the only way you go to zero in 𝑈 through 𝑆 is through that zero in 𝑊, there is nothing 

else in 𝑊 which can take you to zero in 𝑈. So you better be in the null space at 𝑇, okay? So that 

happens when that intersection is zero. So it's sort of like, you know, 𝑆 and 𝑇 are sort of nicely 

related to each other. As in, 𝑆 does not diminish 𝑇 in any way. 𝑇 takes you from 𝑉 to 𝑊 and S 

does not further diminish the dimensions by operation, okay? So for instance, the simple thing to 

think of is: suppose 𝑆 is an invertible operator. right? 𝑈 and 𝑊 are the same. If 𝑆 is an invertible 

operator, clearly 𝑆𝑇 and 𝑇 will have the same null space, right? It's invertible. But you don't need 

𝑆 to be an invertible operator, 𝑆 could be a linear map but its null space could intersect trivially 

with the range of 𝑇. In that case also you have the same effect of the invertible operator like 

thing, except that it’s only specific for this particular 𝑇, right? So if you pick your 𝑇 and 𝑆 

carefully to match, or not, sort of mismatch in the range and null, you can almost have that 

invertibility effect with 𝑆𝑇, okay? So that is the idea here. And once you have null of 𝑆𝑇 being 

null of 𝑇, you can also see that range of 𝑆𝑇 equals range of 𝑇. It is almost as if…  This property 

is very important. So when 𝑆 is restricted to the range of 𝑇, it is one-to-one. So it does not do any 

further damage to the transformation, okay? It does not reduce dimension in any other way, 

okay? So this special case is very, very important. And this special case applies for us when it 

comes to adjoint, okay? So you will see why that is interesting, okay?  
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So these two operators especially are very crucial in a lot of linear algebra studies, okay? So you 

have a linear map 𝑇, you have its adjoint 𝑇∗, okay? Now I can define an operator and I am right, 

this is an operator this time. I can define two very, very interesting operators, two compositions 

𝑇𝑇∗ and 𝑇∗𝑇, okay? These are two different compositions clearly, right, because 𝑉 and 𝑊 are 

not the same. 𝑇𝑇∗ is an operator from 𝑊 to 𝑊, okay? And 𝑇∗𝑇 is an operator from 𝑉 to 𝑊, 

okay, sorry 𝑉 to 𝑉, okay? 𝑇𝑇∗ is an operator from 𝑊 to 𝑊 and 𝑇∗𝑇 is an operator from 𝑉 to 𝑉. 

These two operators are very different even in terms of what they do, but you know, they are 

very nicely connected and they have some very nice properties. In fact in the previous properties 

that we saw of how operators compose, right, how one operator does not destroy the other 

operators thing, these two operators are like that. They really have those nice properties of 

composing properly to give you what you want, okay? So that plays an important role later on. 

So let us see each of these things correctly.  

So 𝑇∗𝑇 is an operator from 𝑉 to 𝑉 and now I know null of 𝑇∗ is actually (range of 𝑇)⊥, right? 

So 𝑇 and 𝑇∗ are like that. So clearly when this is true, we know that null of 𝑇∗ and range of 𝑇 

intersect only at zero, okay? So our good composition result is true, right? So it's almost like the 

invertibility composition. So null of 𝑇∗𝑇 is null of 𝑇 and dimension of range of 𝑇 becomes equal 

to dimension of range of 𝑇∗𝑇. And we also know its equal to dimension of range of 𝑇∗. So this 

𝑇𝑇∗ and 𝑇∗𝑇, they are all very closely related. So many of their properties. And they will all look 

very similar in some sense, right? So this is the high level feel for why that is true, okay? So this 

is the reason. Same thing with 𝑇𝑇∗. 𝑇𝑇∗ takes you from 𝑊 to 𝑊. It's an operator and I mean… 

So where are we heading here? See when you look at just the linear map 𝑇: 𝑉 → 𝑊. One of the 

problems in studying that was we couldn't repeatedly apply 𝑇, right? So when we could 

repeatedly apply something, with operators we got these wonderful eigenvalues and that shed a 

lot of light on what that operator was. Now this 𝑇𝑇∗ trick will give you that repeated application 

possibility, okay? So you have 𝑇, you apply it, compose it with 𝑇∗, right? 𝑇∗𝑇. You get an 

operator now and this operator looks sort of similar to 𝑇, right? It's close to 𝑇 in some sense, in a 

loose way it sort of represents 𝑇. It doesn't take anything away from what 𝑇 is doing. So and now 

𝑇𝑇∗ is an operator, 𝑇∗𝑇 is an operator. You can start thinking of eigenvalues for it. You can start 

thinking of invariant subspaces for it and all sorts of interesting things you can study, okay? So 

this is a nice thing. So again for 𝑇𝑇∗, the same thing is true. Null of 𝑇 is (range of 𝑇∗)⊥ 

perpendicular. So these two intersect only at zero. So you have all these nice relationships that 

are true. And you can see also even here, right? So these two are also equal. I didn't call it out, 

these two are all equal, okay? So 𝑇𝑇∗, 𝑇∗𝑇, they are all equal in dimension, okay? So hopefully 

this gave you a more clear idea of adjoint and its use when studying linear maps and its 

connections to linear operators etc., okay? So in the next lecture or so we will start looking at 

operators and their adjoints. So far we have been looking at linear maps and adjoints and how 

adjoints play a role in understanding linear maps and all that. Now we will start looking at 

adjoints of operators in the next lecture and look at eigenvalues and nice properties from that 

point of view. Thank you very much. 


