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Complex Spectral Theorem 

Hello and welcome to this lecture. We're going to look at one of the cornerstone results of linear 

algebra which is this complex spectral theorem. It's a simple result. Now that we've built up all 

the necessary pieces, the final result will come in in a very easy way. The proof is not too hard, 

but the impact of this result is really huge. In applications all over, people use this spectral 

theorem inside out. Self-adjoint operators, normal operators satisfy the spectral theorem, it's 

very, very powerful. Particularly in physics, there's a lot of applications for this result, okay? So 

let's go in and see what it is. 
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A quick recap. I think most of it is sort of familiar. I've been repeating it so many times. There’s 

this adage that, you know, if you repeat three or seven times it's good for learning. So it's good to 

repeat. So we've been looking at adjoint closely in the last few classes, last few lectures. Adjoint 

is related to sort of the connection between inner products and linear maps, right? So when you 

look at a linear map and inner product, they’re both linear in some ways. And what is the 

connection? Adjoint gives you a very nice connection that way. And that equation down there, <



𝑇𝑣, 𝑤 > = < 𝑣, 𝑇∗𝑤 > defines the adjoint for you. So 𝑇∗ is another linear operator from 𝑊 to 𝑉 

which does this. And there are these nice relationships between null space and range of 𝑇∗. They 

are the orthogonal complements of each other, and in particular you can define special operators 

using the adjoint in terms of what properties the operator shares with the adjoint. If it is equal to 

adjoint, it's called self-adjoint. These are very special operators, sort of like, you know, the book, 

your book talks about the analogy between, in the world of complex numbers, the real numbers 

are special, right? So they are equal to their conjugate. So self-adjoint operators are like that, 

okay? You can think of them like that. They are equal to their adjoint. And then we have these 

special other operators called normal operators. Self-adjoint operators are normal operators. But 

there can be normal operators which are not self-adjoint. The definition is that they commute 

with their adjoint. 𝑇𝑇∗ is 𝑇∗𝑇 and it's a larger class, and this class of operators is crucial in this 

complex spectral theorem. So you will see that the spectral theorem nicely holds for these normal 

operators. We saw towards the end of the last lecture, this nice result, so, that if you have two 

eigenvectors which correspond to two different eigenvalues of a normal operator, then they are 

in fact orthogonal, okay? So previously we saw results of how, you know, if you have an 

operator and there are two eigenvectors from two different eigenvalues, they are linearly 

independent. That is always true for any operator. But for, in an inner product space, when you 

have normal operators, two eigenvectors that correspond to two different eigenvalues are in fact 

orthogonal, okay? So they are not even related to each other, sort of, right? So that is the modern 

interpretation for what these vectors are, okay? So this is a quick recap. With this, let's jump into 

the complex spectral theorem, okay?  
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So before we jump into the complex spectral theorem, it's sort of like a diagonalization result, 

okay? At some level, it's a diagonalization result. So let us first look at diagonalizable operators. 

And I will remind you of what we have studied about diagonalizable operators and how to think 

of them, how to express them and how to work with them, okay? So first look at, we’ll look at 

this and then we will look at the corresponding picture for normal operators, where you have 

orthogonality and all that, okay? So let us start looking at it. So if you have an operator 𝑇: 𝑉 →

𝑉, and if I say it is diagonalizable, then it means that there is a basis of eigenvectors of 𝑇 for the 

vector space 𝑉, okay? The entire vector space 𝑉 has a basis which is made of all eigenvectors of 

𝑇. Every vector in the basis is an eigenvector of 𝑇. Of course, the basis vectors have to be 

linearly independent, they have to span the space. So this is all going to work with just 

eigenvectors of T. So when you have that, you know, that 𝑇𝑣𝑖 is going to be 𝜆𝑖𝑣𝑖, and if you look 

at the matrix of this operator 𝑇 with respect to eigenvector basis, it simply becomes a diagonal 

matrix, okay?  

So a couple of things I want to point out. One is these 𝜆s can be equal, okay? I have not said 𝜆s 

have to be all distinct, I just put 𝜆1, 𝜆2 simply to distinguish it, but they could be equal, there 

could be multiplicity. That's one thing. Another thing which is very interesting is: see, once you 

have an operator like this, it's sort of, you know, because there is a basis for the whole space 

made of eigenvectors, there's something interesting going on here. So supposing you take any 

vector 𝑣, right? So what does that mean? So once you have an operator like this which has an 

eigenvector basis, any vector 𝑣 can be written as 𝑎1𝑣1  + ⋯ +  𝑎𝑛𝑣𝑛 and each 𝑣𝑖 is an, 𝑣𝑖 is an 

eigenvector of 𝑇, okay? So this is something very interesting. So, so any vector 𝑣 can be written 

as a linear combination of eigenvectors of an operator, of a diagonalizable operator, okay? So 

that is a nice property to have. So it is as if… And, you know, once you write it as a linear 

combination, you know what 𝑇 does to 𝑣, right? So 𝑇𝑣 is going to be simply 𝑎1𝜆1 + ⋯ +  𝑎𝑛𝜆𝑛, 

okay? Sorry, I forgot to put the 𝑣1, … , 𝑣𝑛, okay? So it is just diagonal. Each 𝑣𝑖 gets scaled by the 

𝜆s, okay? So the operation of 𝑇 is easy to describe. But more importantly, the eigenvectors sort 

of span the space, right? So operator 𝑇 sort of controls the whole space in some sense. So this is 

important and this is useful. So supposing, so you want to define the operator 𝑇 in some close 

way with 𝑣. This sort of helps you do that, okay? So I will comment more on this when we look 

at self-adjoint and normal operators later, okay? So this is the basic definition for diagonalizable 

operators.  

Now in terms of matrices, supposing you want to start looking at matrices for diagonalizable 

operators. Let us say you have 𝐴, which is an 𝑛 × 𝑛 matrix and let us say it represents a linear 

operator 𝑇 in the standard basis, okay? And now this 𝑇 is going to be diagonalizable, okay? I am 

going to assume that 𝑇 is diagonalizable. I think maybe I should write that down somewhere 

here. So it is diagonalizable. So 𝑇 is diagonalizable, okay? Something to keep in mind. So, and 

then 𝑣𝑖 's are the eigenvector basis, right? So just like before, I mean 𝑣𝑖’s are the eigenvector 

basis, 𝑇 is a diagonalizable operator. Now I am saying 𝐴 is the 𝑛 × 𝑛 matrix in the standard 



basis, right? So we know that we can make this matrix 𝑆, right? We have used this before. This is 

the change of basis from the eigenvector basis to the standard basis. How do you do that? So if 

every column is 𝑣1 to 𝑣𝑛… What do I mean by column is 𝑣1? The coordinates of 𝑣1, right? So 

the first column is coordinates of 𝑣1. The first eigenvector basis, the vector, the coordinates of 𝑣1 

in the standard basis, you put that in the first column. Likewise in the ith column you put the 

coordinates of 𝑣𝑖 in the standard basis. You make a matrix like this, this matrix will change basis 

for you from the eigenvector basis to the standard basis, right? Coordinates from the eigenvector 

basis get converted to coordinates in the standard basis if you do multiplication with 𝑆. So this is 

your change of basis vector, okay? Now this will play a good role in, you know, diagonalizing 𝐴. 

We know how that works, right? So we have seen that before. 
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So we can make 𝑆−1, you can, I mean this will be an invertible operator. It is a change of basis 

operator, so it is invertible. So you can, you can compute 𝑆−1. And for 𝑆−1 I like to call the rows 

of 𝑆−1 as something. You'll see why this plays an important role. But anyway, 𝑆−1 can be 

computed. After you compute 𝑆−1, the ith row of 𝑆−1 I will call as 𝑢𝑖
𝑇. I am putting transpose 

because we represent column vectors as vectors and then row vectors become transpose. Just a 

notational convenience. So we write 𝑢𝑖
𝑇 here for the ith row, okay? So now what is true, I know, 

is that 𝐴 can be written as 𝑆𝐷𝑆−1, right? So the way I sort of interpret this is: 𝑆−1 converts from 

the standard basis to the eigenvector basis, and 𝐷 is the operator in, diagonal operator in 

eigenvector basis, and then from eigenvector basis you go back to standard basis. That should 

give you 𝐴, okay? So 𝑆𝐷𝑆−1, I think that's correct, so that's the matrix in standard basis that you 



write, okay? So now what is 𝑆? 𝑆 is this 𝑣1, I've written it column wise like this, 𝐷 is the 

diagonal matrix 𝜆1 to 𝜆𝑛, okay? So I didn't quite tell you what 𝐷 is. 𝐷 is the diagonal matrix. 

And then I have 𝑆−1 whose rows I have denoted as 𝑢𝑖
𝑇. Now this product you can rewrite in one 

very simple and interesting way and that is this, that the matrix of a diagonalizable operator in 

any basis is going to look like this, right? It is going to be 𝜆1𝑣1𝑢1
𝑇  + ⋯ + 𝜆𝑛𝑣𝑛𝑢𝑛

𝑇 where this 𝑣1 

is basically the coordinates of the eigenvector basis in that basis that you have chosen for 𝐴, 

okay? So supposing, let's say we choose standard basis for 𝐴. Just to be clear, the matrix of 𝑇 in 

standard basis is given simply by this nice simple formula where this 𝑣1 to 𝑣𝑛 are simply the 

eigenvectors in that basis. And 𝑢1 comes from the inverse, okay? So this is very, very useful if 

you think about it. You can express any diagonalizable operator in this fashion very cleanly, 

okay? So this is quite nice. We will see an analogous result for normal operators and it will be 

even nicer. But still this is a nice enough result to start with for diagonalizable operators, okay? 

So quite a few things I want to point out here. I will point that out in the next slide. So one can 

think of, now, a general form for matrices of diagonalizable operators. They will be of this form, 

that any matrix which is diagonalizable is going to have this form. 𝜆1𝑣1𝑢1
𝑇... 𝑣𝑖 is the 

eigenvectors in the basis and 𝑢𝑖 is rows of the inverse matrix, okay? So that's very clear. That is 

nice.  
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Now there is a connection between this expression and rank. When you want to fix the rank of a 

diagonalizable matrix as, say, 𝑟, it is enough if you take 𝑟 such terms in the expression, okay? So 

it is almost as if… So you can see why this is true, right? So if you have rank 𝑟, then there are 



(𝑛 − 𝑟) eigenvectors with eigenvalues 0, right? So those will go away and then the remaining 𝑟 

only will have the, you know, non-zero eigenvalues and eigenvectors associated with them. And 

so 𝐴 becomes simply that and the remaining eigenvalues are 0 and they go off to 0, okay? So 

this is the… And the matrix is diagonalizable. Now that is very important. The matrix is not 

diagonalizable, you cannot do this. But it is diagonalizable and diagonalizable matrices are 

plentiful in some sense, okay? So you can take, you can use diagonalizable matrices, if you're in 

doubt, you can use diagonalizable matrices. It's not too bad, okay? Now notice some nice things 

about this. Each of these terms, right, 𝑣1𝑢1
𝑇 is a rank 1 matrix, isn't it? 𝑣𝑟𝑢𝑟

𝑇 is a rank 1 matrix. So 

rank 1 matrices are very simple to understand. So we know we know what rank 1 matrices do. 

And when you want a rank 𝑟 diagonalizable matrix, you simply take a linear combination of 𝑟 

rank 1 diagonalizable matrices in this fashion, and you get a rank 𝑟 diagonalizable matrix. And 

that's the general form. That's how it looks, okay? That's how, that's how diagonalizable matrices 

of rank 𝑟 look always, okay? So this form is very nice and you can use it quite often when you 

want to derive some things with diagonalizable matrices of a particular rank, okay?  

So, so far we have seen general operators, what happens to general operators when they are 

diagonalizable, okay? So now what about normal operators, okay? So that's what we've been 

studying so far. Normal. Of course, self-adjoint is a subset of normal. So when I talk about 

normal, I'm also talking about self-adjoint operators. What about normal operators? What can we 

say about normal operators from a diagonalizable point of view? It turns out there's a very, very 

surprising and simple and elegant result that normal operators satisfy, and that's why they are 

very, very important. And that's this complex spectral theorem that will come up soon. But 

before that, let us look at this. A few examples of how this works, okay? So I will show you a 

few examples. You will get an idea. I mean and these expressions are fine but it is good to see 

examples. We will see some examples and then we will jump into this complex spectral theorem, 

okay? So let's start with the simplest possible example. So 𝐴 is diagonal. [1 0;  0 2]. It’s self-

adjoint, diagonal and in this case it is very, very easy to write 𝐴 as the sum of two rank one 

matrices, right? [1;  0][1 0], [0;  1][0 1] and then you multiply by 2, you can see the eigenvalues. 

It’s very easy, it’s very trivial, there is nothing going on here.  

Let’s take a slightly more general example. [1 2;  3 2]. This is not self-adjoint, you can see 

clearly it's not self-adjoint, so definitely, I mean it could be normal, I haven't checked that, 

maybe, I don't think it's normal, okay? So anyway, you can check it. It's very unlikely to be 

normal, but you can check it. I think it’s not normal, but anyway, it’s diagonalizable. It’s got two 

distinct eigenvalues, okay? -1 and 4, I have picked it so that the eigenvalues are very nice. Once 

you see two distinct eigenvalues and a 2 × 2 matrix, you know it’s diagonalizable, right? So that 

is for sure, and you can make this 𝑆. you can find the eigenvector corresponding to -1, that’s 

[1; −1], it’s quite easy to see I think. Eigenvector corresponding to 4 is [2;  3], so that’s 

[1 2; −1 3]. And then 𝑆−1 you can easily compute. It’s [
3

5
 −

2

5
;

1

5
 
1

5
]. So all that I have done. And 

now I know I can use my general form, right? 𝐴 is 𝜆1 which is -1… Notice this minus here, do 



not forget it, times the first column, outer product with first row, this is the outer product, right? 

The rank one outer product plus the second eigenvalue, right? Second eigenvalue times the 

second column of 𝑆 and the second row of 𝑆−1, right? So that's what I've written. You can check 

that this is actually equal to [1 2;  3 2], okay? It’s quite easy to check, okay? So in small cases it 

looks like a bit of an overdoing of what is going on, but I just wanted to illustrate how it works in 

example so that you clearly see what is going on. In larger matrices, this kind of decomposition 

is very, very interesting. So notice, this 4 is much bigger than -1. So you can make some 

judgment calls based on what will dominate etc. And particularly for larger matrices these kind 

of things make a big difference, okay?  
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So that was two examples. I am going to take next a normal example. This is an example we 

have seen before. [2 − 3;  3 2]. We saw that it was normal and it has two eigenvalues: 2 +  3𝑖 

and 2 −  3𝑖. Clearly, again distinct eigenvalues, so it will be diagonalizable. And then you can 

find 𝑆, 𝑆−1. I have done all that, and then you can write 𝐴 as this, okay? So some of you may 

argue [2 − 3;  3 2] is simple enough, why write it with all these 𝑖's and all that? But, you know, 

this is rank one plus rank one. It has its own merits when we look at it. Plus, plus, notice this 

major, major result. This eigenvector basis is orthonormal, okay? So this [𝑖;  1], [−𝑖, 1], these 

two are orthogonal, okay? The first column of 𝑆 dot product with this, not dot product, the 

complex conjugate product with the second column goes to zero, okay? So these eigenvectors of 

this normal matrix, normal operator are actually orthogonal, okay? So we know that that's true, 

right? For normal operators, two distinct eigenvalues, the eigenvectors will be orthogonal, okay? 



So this orthonormal basis makes it, makes life very, very easy and simple when dealing with 𝐴 in 

this fashion, okay? So I will comment more, a little bit, but from this example you see that this is 

working out to be true, okay? So, are normal operators diagonalizable? Can we say some results 

like that? It turns out all that is true and all that is captured in the spectral theorem, okay? The 

spectral theorem is a very nice result which completely characterizes the normal operator in 

terms of its eigenvalues, eigenvectors and its diagonalizability, okay?  
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So here is the result. Very interesting and simple and deep result about normal operators, okay? 

You have an inner product space over the complex field, okay? I am going to use the complex 

field here because I am doing normal and all that. Then 𝑇 is an operator from 𝑉 to 𝑉. The 

following three things are equivalent. What does equivalent mean? They all imply each other, 

okay? Any one is true, the other two are true, okay? So that's how it works, okay? Equivalent, 

remember, it's not that one implies the other alone, the other also implies this, everything is true, 

okay? Not everything is true, every order, everything… 1 implies 2, 2 implies 1, 1 implies 3, 3 

implies 1, 3 implies 2, 2 implies 3, everything is implied by any one state, okay? That's what it 

means.  

So what are the three things that are equivalent? 𝑇 being normal. Look at the next one. 𝑣 has an 

orthonormal basis of eigenvectors of 𝑇, okay? So you have eigenvectors of the operator 𝑇. Not 

only are they linearly independent and span the space which gives you, makes them a basis, the 

eigenvectors are in fact orthogonal to each other and they span the bases, so they form an 

orthonormal basis for 𝑉. Supposing you have an operator 𝑇 which has an orthonormal 



eigenvector basis, right, which is… An operator 𝑇 in an inner product space and that inner 

product space has an eigenvector orthonormal basis, eigenvectors of 𝑇 orthonormal basis. Then 

that operator has to be normal, okay? So these two are implied. And if 𝑇 is normal, then for any 

operator you can form eigenvectors, and those eigenvectors in fact will be orthonormal, and they 

will span the basis, span the whole inner product space, okay? So it's very interesting to look at 

this result. Just that one operator results in a basis for the whole space. And they have to be 

orthonormal and all that, okay? So it's very nice to see, have that.  

So of course 2 and 3 are very obvious, right? So once you have an orthonormal basis of 

eigenvectors, clearly 𝑇 is diagonal or diagonalizable with respect to an orthonormal basis, okay? 

So that is the new word here. We have brought in this orthonormal everywhere, okay? When 𝑇 is 

normal, not only is 𝑇 diagonalizable, right, it is diagonalizable with respect to an orthonormal 

basis, okay? So it is a really, really strong characteristic for a normal operator, okay? If it is 

diagonalizable, okay, you might have as well said it is diagonalizable, but it’s not only 

diagonalizable, it's diagonalizable with respect to an orthonormal basis, okay? So that makes 𝑇 

really, really simple to deal with in practice, and no wonder it's very popular, okay? So people 

are able to easily use it in various situations, okay? So we're going to prove this result and that 

will more or less be the end of this lecture.  
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The proof is not very hard. You've done most of the hard work, it's just easily putting some 

things together. But there is essentially one slightly interesting idea in the proof. Let's see that, 

okay? So the first thing I'm going to do away with is 2 implying 3 and 3 implying 2, okay? So 



those two are sort of standard, and we already know this, okay? We'll do 3 implies 1 first, that's 

actually quite easy. So what is, what does 3 say? 𝑇 is an operator and there is an orthonormal 

basis with respect to which 𝑇 is diagonal, okay? So let us say that the basis is 𝐵, okay? 𝐵 is an 

orthonormal basis such that the matrix of 𝑇, 𝑀(𝑇, 𝐵) is the matrix of 𝑇 with respect to 𝐵 is 

diagonal. Remember this is a diagonal matrix, okay? Now 𝐵 is orthonormal. So what is the 

matrix of 𝑇∗ in the same basis 𝐵, okay? Because 𝐵 is orthonormal, you have a matrix for 𝑇. 

What is the matrix for 𝑇∗? You take conjugate transpose, okay? When you take conjugate 

transpose of a diagonal matrix, what will you get? You will end up getting another diagonal 

matrix, okay? So you see, once you have this property that 𝑇 being diagonal with respect to the 

orthonormal basis, not only 𝑇, 𝑇∗ is also diagonal with respect to that same orthonormal basis. 

So once you have two diagonal matrices, they commute, right? Any two diagonal matrices 

commute. It doesn't matter in which order you multiply. So 𝑇 commutes with 𝑇∗. So 𝑇 becomes 

normal, okay? So we have shown 3 implies 1. If an operator is diagonal with respect to an 

orthonormal basis, it has to commute with its adjoint, okay? It has to become normal, okay? So it 

is quite easy to see this, all right? So that is nice.  

And the only thing left is 1 implies 3, right? 1 implies 3 is the only thing left and there we will 

invoke Schur’s theorem, okay? What does Schur’s theorem tell you? A normal operator, see, 1 

implies 3 means 𝑇 is already normal, okay? I have to show that 𝑇 has a, 𝑇 is diagonal with 

respect to an orthonormal basis, okay? We already know 𝑇 is upper triangular with respect to an 

orthonormal basis, this is true for any operator, leave alone normal operator. So without even 

using normal operator, we know 𝑇 is upper triangular with respect to an orthonormal basis. So 

let's say we pick up that orthonormal basis {𝑒1, 𝑒2, … , 𝑒𝑛}, okay? And then we find the matrix of 

𝑇 with respect to this orthonormal basis you will get an upper triangular matrix, right? So 

everything in the bottom will be 0, on the top half will be something, 𝑎11, 𝑎12 like that. I do not 

know what it is, it will be like that. Now what is the… See, this is an orthonormal basis. So what 

is the matrix for 𝑇∗ with the same basis 𝐵? It will be the conjugate, right? Conjugate transpose, 

okay? So you transpose it and then you take conjugate. Is that okay? So that is easy to see. This 

is, these are the two matrices for 𝑇 and 𝑇∗ with respect to the same basis 𝐵. This is the basis 𝐵 

by the way, {𝑒1, … , 𝑒𝑛}, okay? So what we can show using normal… So far we have not used the 

property that 𝑇 is normal, right? So this is true for any operator 𝑇. When you use the property 

that 𝑇 is normal, you can show that this matrix itself is diagonal, okay? With respect to this 

orthonormal basis itself, the orthonormal basis which supposedly makes any operator upper 

triangular makes a normal operator diagonal, okay? Not just upper triangular, we will simply 

show the off-diagonal elements on the upper side of this matrix are 0, okay? Using the normal 

property, okay? So it is quite easy actually, if you look at the proof. But that is the idea of the 

proof, okay?  

So let us take the first basis vector 𝑒1. What is 𝑇𝑒1? That is the first column, isn't it? Maybe I 

should write something here. This column is 𝑇 times 𝑒1, right? That is the definition of a matrix 



for an operator with respect to a basis, okay? So ||𝑇𝑒1||
2
 is |𝑎11|2, okay? So that is easy to see. 

What is 𝑇∗𝑒1? 𝑇∗𝑒1 is this guy, right? Okay. Now I know because 𝑇 is normal, ||𝑇𝑒1|| and 

||𝑇∗𝑒1|| are the same, okay? So this, now this ||𝑇𝑒1||
2
  which is |𝑎11|2 equals ||𝑇∗𝑒1||

2
. Now 

what is ||𝑇∗𝑒1||
2
? |𝑎11|2  +  |𝑎12|2  + ⋯ + |𝑎1𝑛|2. Now if these two have to be equal, this 𝑎11 

will cancel out and of course everything else has to be zero, right? These are all sum of positive 

numbers being equal to zero, each positive number has to be, I mean sum of non-negative 

numbers being equal to 0 and each non-negative number has to be equal to 0 itself, okay? So that 

is how you get 𝑎11 alone will survive, everything else will go to 0, okay? So once you show that 

all these elements are 0, you can now proceed to the next one, okay? After this, you can proceed 

to the next one and again you use the same idea, okay?  
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So once you have shown that the top thing is 0, what is 𝑇𝑒2? 𝑇𝑒2 is the second column and the 

only thing that is non-zero in the second column now is 𝑎22, right? |𝑎22|2. Now you look at 

𝑇∗𝑒2, that is the second column and that is just |𝑎22|2  + ⋯ +  |𝑎2𝑛|2. And then 𝑎22 will cancel, 

𝑎23 to 𝑎2𝑛 is 0. So everything else below the diagonal goes to 0 here. Everything else to the right 

of the diagonal here goes to 0, okay? The same way you proceed, you can show that this matrix 

itself is diagonal, okay. Quite a simple proof, but it sort of uses the notion of Schur’s theorem to 

get an upper triangular matrix and this notion of normality which makes the magnitude same in a 

very clean, neat way to get to diagonal, okay? So that concludes the proof of the complex 

spectral theorem, okay?  
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So let us look at a matrix picture of normal operators similar to the matrices of diagonalizable 

operators that we saw before. We saw that any diagonalizable operator can be written as the sum 

of a linear combination of rank one matrices with eigenvectors coming in each of the matrices, 

right? So it was a very simple thing to see. Something very similar you can write for normal 

operators, but now with orthonormal basis, okay? Very, very powerful, okay? So let us say 𝐴 is 

an 𝑛 × 𝑛 matrix which represents a normal operator 𝑇, maybe in the standard basis, it could be 

any other basis, I am just taking standard basis. We know that 𝑇 is diagonal with respect to an 

orthonormal eigenvector basis {𝑒1, … , 𝑒𝑛}, let’s say the corresponding eigenvalues are 𝜆1 to 𝜆𝑛. 

Once again, these 𝜆s could be equal, okay, I am just taking them to be generically 𝜆1 through 𝜆𝑛. 

Now matrix, I am going to make this 𝑆 matrix with 𝑒𝑖 as the, you know, ith column, right? 

Coordinates in the standard basis, same as before. And then of course I can do 𝑆−1. But now 

there is something interesting, right? Because these are orthonormal, I know what the ith row of 

𝑆−1 will be, right? The ith row of 𝑆−1  will simply be 𝑒𝑖
𝑇̅̅ ̅ , okay? You take 𝑒𝑖 and then make a 

row vector out of it by doing conjugate transpose, that will be the ith row of 𝑆−1, okay? You can 

easily check that 𝑆−1𝑆 = 𝐼. So it's an exercise, it's quite easy to check 𝑆−1𝑆 =  𝐼, okay? So you 

can quite easily check. So, right, because this shows up in the ith column, so when the ith column 

multiplies the columns of 𝑆, only the ith entry will survive, everything else will go to zero, right? 

The orthonormality ensures that, okay? So you can ensure that. So this 𝑒𝑖
𝑇̅̅ ̅ becomes the ith row. In 

the general case, when you had a diagonalizable matrix, when the basis was not orthonormal, 

you couldn't say this, right? The ith row was some general thing 𝑢𝑖, but here the ith row becomes 

the conjugate transpose. So that is very nice.  



So once you have that, the familiar form that we had, 𝑆𝐷𝑆−1 becomes even nicer, okay? So not 

only do you get, you know, sum of 𝑛 rank 1 matrices, each rank 1 matrix is given by 𝑒1𝑒1
𝑇, the 

same 𝑒1𝑒1
𝑇, not, you know, 𝑣1𝑢1

𝑇, something else, but 𝑒1𝑒1
𝑇̅̅ ̅, okay? So this is very, very clean and 

you can work with this so easily, it's like, for instance, so this is the comfort of that, right? So 

look at, look at what we could do before, right? If you had 𝑣 ∈ 𝑉, you can always write 𝑣 as 

linear combinations of the 𝑒. Notice what happens when you do 𝐴𝑣, right? Or I mean you can 

even do 𝑇𝑣 if you like. Look at what happens when you do 𝑇𝑣 and when you multiply this 𝑇 

with 𝑣, and I know 𝑇 is of this form, when 𝑒1 multiplies, I know that, you know, this term is the 

only term, the first term is the only term that will survive, everything else will go off to 0 and 𝑇𝑣 

can be written in a very, very simple form. So you get 𝜆1𝑎1𝑒1  + ⋯ + 𝜆𝑛𝑎𝑛𝑒𝑛, okay? As simple 

as that, right? So it just goes very cleanly. Any 𝑣 can be written as a linear combination of the 

orthonormal basis, eigenvector basis vector for 𝑇, and then 𝑇𝑣 simply becomes 𝜆1 , …, 𝜆𝑛, 

okay? So this kind of property is used, like I said, quite extensively in many applications. One of 

the applications is in quantum mechanics, when people define states as complex vectors. Then 

the operators representing actual physical quantities are actually usually taken to be self-adjoint 

operators, right? Hermitian operators. And the property that is very crucial here is that any 

operator will have a basis, orthonormal basis which is an eigenvector basis, right, eigenvector 

orthonormal basis. So now what happens is: any state that you sort of think of for the system can 

be expressed as a linear combination of those eigenvectors. And one defines probabilities of, you 

know, measuring and measurements as you know reducing to eigenvectors. And the probabilities 

depend on the coefficients that are there for the eigenvector. So this is a very popular application 

and you can see that the property of hermitian being, you know, having eigenvector basis is very 

very crucial.  

And also I think on top of hermitian, you might say, why not pick normal operators, why pick 

hermitian operators? You do not lose much actually but hermitian operators also have real 

eigenvalues and in physics you tend to associate real values with physical quantities. So you can 

say, you know, measurement of hermitian operators results in real physical quantities and so 

that's why hermitian operators are very popular in quantum mechanics. So that is just one, one 

application. There are so many other applications. And this form, right, so this form is 

particularly powerful. So see, particularly for hermitian operators. 𝜆1 is going to be real, so you 

can order these 𝜆1 > ⋯ > 𝜆𝑛. Usually 𝜆1 is taken as the largest eigenvalue and then 𝜆2, then 𝜆3 

etc. And when 𝑛 is very, very large the first few eigenvalues will dominate, okay? So usually 

people tend to make some assumptions on how the first few eigenvalues are, and there are so 

many more applications based on this decomposition, okay? So this decomposition writes 𝐴 as 

the sum of 𝑛 rank 1 matrices, each matrix is an orthonormal, I mean they are all orthonormal, 

and then there is that outer product, okay? So it's really very interesting. So how that, you know, 

the other rank one matrices do not affect the first rank one matrix in any way, right? So this is 

sort of orthonormal in that sense, not just independent, okay? So it's very, very, very strong and a 

simple decomposition.  
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Of course you can also do a rank r assumption here. So if you say rank 𝑟, only the first 𝑟 terms 

will survive, others will go off to zero, okay? So a self-adjoint operator, normal operator has this 

form. That's it. No other form can be taken by it, okay? So a very useful form in which you can 

now prove things. So if you want to prove properties for normal operator, self adjoint operators, 

you can assume they have this form, okay? That is the end of this lecture. The next lecture we 

will see what is called the real spectral theorem, which specializes this to the self adjoint case, 

okay? This is true for any normal operator. What happens for a real, in the real space? What if 

your vector space is over reals, and you do not want to allow for complex eigenvectors, right? So 

in that case what do you do? So that is done in the real spectral theorem. We will see that in the 

next lecture. Thank you very much. 


