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Hello and welcome to this lecture. This lecture is primarily going to talk about two or three 

different ideas, mostly sort of in maximization-minimization, optimization sort of framework in 

relation to matrices, quadratic forms, you know, matrix norms and other just pure multivariate 

optimization problems. And it's very surprising how the simple idea of, you know, positive 

operators, eigenvalues, real spectral theorem, all these things play an important role in giving us 

a sense of, you know, the maximization-minimization in these kind of forms. So you will see it's 

got lots of interesting applications, and this lecture will walk you through that mainly. So let us 

get started. So I will skip the recap for this lecture.  
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I think, so in the previous lecture we were looking at positive operators which basically are self-

adjoint operators which have, you know, non-negative eigenvalues, right? So that gives you a 

sense of what positive operators are. We saw many of their interesting properties. We'll put some 

of them to use, at least show some applications of them in this lecture and also applications for 

the real spectral theorem. I think it’s really more applications of the spectral theorem than 



anything else. I mean, if you look at positive operators, really the spectral theorem is everything 

in that, right? So the fact that it's self-adjoint and its eigenvalues are non-negative lets you define 

the square root, and I mean the whole characterization is revolving around that, okay? So you 

can think of this as applications of the real spectral theorem.  
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Okay. So the first thing we're going to look at is, we're going to look at quadratic forms in some 

detail. These things came up even in the previous lecture. I was in the context of introducing 

positive operators, right? So we saw how the quadratic forms really, I mean, play a crucial role in 

the definition of positive operators. The quadratic form is non-negative means the matrix 

defining that is positive, right? So that's the way we defined it. So now we're going to specialize 

to real vector spaces. I mean, it's not because things are not easy in the complex vector space, it's 

the same thing except that just it's easier for me to discuss and present the ideas in real space. So 

I will start with an 𝑛 × 𝑛 real symmetric matrix and I’ll look at the quadratic form 𝑥𝑇𝐴𝑥, okay? 

So this has a certain form. I don't know if you realized it, I think I didn't really spend some time 

thinking about it. So in general, if you want to write, say, [𝑥1  𝑥2  … 𝑥𝑛] [

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑛

] [

𝑥1

𝑥2

⋮
𝑥𝑛

], 

right? So this is the quadratic form, isn't it? So this quadratic form is basically this. So in case 

you are wondering why people say quadratic and all that, you will see it is basically a degree 2 

function. So if you look at, if you multiply this out, you are going to get (𝑥1, 𝑥2, … , 𝑥𝑛) and then 

you will get a column vector here. The first entry will be (𝑎11𝑥1  +  𝑎12𝑥2  + … ), like that. So 



you can do this multiplication first, and then you can multiply by this, right? With 𝑥1 you can 

multiply, okay? So if you look at it, you will get 𝑎11𝑥1
2, right? When this multiplies. Plus, 

remember, this is symmetric, so 𝑎12 and 𝑎21 are the same. But, I mean, for just comfort, I'll keep 

it like this. You will get (𝑎12  +  𝑎21)𝑥1𝑥2, right? So you will actually get 𝑎12𝑥1𝑥2 and 𝑎21 will 

also give you 𝑥2𝑥1. So I am just writing it like that so you will get terms of this form, okay? So I 

am not going to write everything. So you will get a term like, you know, 𝑎22 will be what? 𝑥2
2, 

right? So you will get, and then generally you will be getting this 𝑎𝑖𝑗 + 𝑎𝑗𝑖, okay? If 𝑖 ≠ 𝑗, you 

will get this plus this 𝑥𝑖𝑥𝑗, right? So basically you get terms of this form, right? These are degree 

two terms or quadratic terms, right? 𝑥𝑖
2 or 𝑥𝑖𝑥𝑗, you get terms like that and then you get a linear 

combination. So that is why this is called a quadratic form. I didn't quite emphasize this, I 

thought you could do it yourself. But this is the reason why these kind of forms that are written 

succinctly, 𝑥𝑇𝐴𝑥, these are called quadratic forms for that reason, okay? So you have to keep 

this expression in mind. So generally quadratic form will be a long series, long polynomial, 

multivariate polynomial of, you know… It's a homogeneous polynomial. What's homogeneous? 

Every term has got degree two, right? So degree two, this is degree two, this is degree two, every 

term has degree two. And, you know, it could be 𝑥1
2, 𝑥1𝑥2, 𝑥1𝑥3, like that. And the coefficients 

are multiplying that and adding it up. So it's a polynomial, so it's a polynomial which is 

homogeneous degree two, right? And coefficients come from the matrix, right? Suitably they 

come. So this is how this quadratic form looks, okay? So if you take small 𝑛, you can write 

explicitly how it will look, right? If you take 𝑛 = 2, it will just be, you know, it will have 𝑥1
2, 𝑥2

2 

and 𝑥1𝑥2, that's it, okay? And larger 𝑛 you'll have more and more and more terms, okay? So this 

is how, this is the picture you should have in your mind when you think of a quadratic term, 

quadratic form. It's a form like this, but it also has this homogeneous degree two polynomial 

expansion in this form, okay? So both are okay. If I give you the polynomial, you can go to the 

matrix, right? How do you go to the matrix given a polynomial, right? You can always go to a 

symmetric matrix, no? You can take this coefficient, divide by 2, put it in 𝑎𝑖𝑗 and 𝑎𝑗𝑖, you will 

get, you can go back to the matrix, okay? So this is some basic thing about quadratic 

polynomials, quadratic forms. I didn't quite describe this in the previous lecture. I thought I 

should do it here, okay? Hopefully this is clear, okay? So this is how a quadratic form looks. 

Okay. So let us move on.  

 

So here is an example, okay? I have a very simple example for 𝑛 =  2. [
1 4
4 1

]. You write down 

the same expression and add it up, you will get 𝑥1
2  +  8𝑥1𝑥2  + 𝑥2

2, okay? So now when you 

think of how to plot this, like, for instance, if you want to plot this quadratic form as a function 

of 𝑥1 and 𝑥2, it will actually be a 3 dimensional plot, right? And 𝑥1
2  + 𝑥2

2 is very easy, right? 

You can sort of imagine how it will be. But this 8𝑥1𝑥2 is a little bit confusing. So in general, in 

this polynomial, in a quadratic homogeneous polynomial, these cross terms, 𝑥1𝑥2 terms slightly 

complicate the picture. If it was only, if these cross terms are not there, 𝑥1
2  +  𝑥2

2 is considerably 

simpler than dealing with the cross terms, okay? So this is one constant thing about quadratic 



forms. You like quadratic forms without cross terms better because you can deal with them 

easier. It is easy to see that 𝑥1
2  +  𝑥2

2 will be positive everywhere. You know it will be 0 at 0 and 

then after that it will increase. So you can think of all very easy ways of characterizing 𝑥1
2   +

 𝑥2
2, right? So if you say 𝑥1

2  +  𝑥2
2 is a constant, you know what you will get, right? You will get 

a, you will get a circle, you know? Everything is easy to characterize when you don't have the 

cross term. When you have the cross term, things become complicated, okay? So one of the 

goals that people do is: can you do a change of variables, some linear change of variables to 

eliminate the 𝑥1𝑥2, okay? So that's sort of like diagonalization, right? You can see how that is 

similar to diagonalization. If this were diagonal, if the matrix were diagonal, you will only have 

the square terms, you won't have the cross terms. So you have a symmetric matrix, you want to 

make it diagonal, you can do a change of variable. So this is where everything comes together, 

what we've been studying with symmetric matrices and diagonalization and quadratic forms and 

simplifying them by eliminating the cross variables, okay? So here is a change of variables. This 

is sort of inspired by the diagonalization. But, you know, if I didn't tell you that, it will look like 

magic, you know? If you say 𝑥1 is 𝑠1 + 𝑠2, 𝑥2 is 𝑠1 −  𝑠2, you see the cross term disappears, 

okay? It will disappear and you will get a 10𝑠1
2  −  6𝑠2

2. So the question of course is how does 

the above generalize? And the generalization is through the real spectral theorem and 

diagonalization, okay? So you can sort of expect that and that is what will happen, okay?  
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So this is how you use the spectral theorem to simplify quadratic forms. Supposing somebody 

gives you an arbitrary 𝑛 × 𝑛 real symmetric matrix. It has off-diagonal elements, so the quadratic 



form has, you know, cross terms, 𝑥𝑖𝑥𝑗  terms, quite a few of them, okay? So you start with your 

orthonormal eigenvector basis. Maybe you write coordinates for these basis vectors with respect 

to the standard basis, right? So we will always think of it like that. And we know 𝐴𝑒𝑖 is 𝜆𝑖𝑒𝑖. So 

this 𝜆𝑖’s are your eigenvalues, right? For this real symmetric matrix, okay? So now I can make a 

matrix 𝑆 which is {𝑒1, … , 𝑒𝑛} written in columns, okay? Then I know 𝑆−1, because this is an 

orthonormal basis vector, basis vectors, so 𝑆−1 will be the same as 𝑆𝑇, right? We discussed this 

before. So if you look at 𝑆𝑇, you multiply 𝑆𝑇𝑆−1, you can quite immediately see that, you know, 

only the diagonal entries will be 1, everything else will be zero because of the orthonormal 

property, okay? So this 𝐴 itself can be quite easily written as 𝑆𝐷𝑆𝑇, okay? In using this 

orthonormal basis decomposition. And 𝐷 becomes 𝜆1 to 𝜆𝑛 on the diagonal, okay? I hope this is 

clear. I hope… I've got the ordering of 𝑆 and 𝑆𝑇 wrong. I always get messed up, mixed up on 

this. Maybe it's, is it 𝑆𝑇𝐷𝑆 or 𝑆𝐷𝑆𝑇? One of the two, okay? So it doesn't matter what it is, it sort 

of works, okay? So this is the diagonalization, the diagonalization is important. Of course it 

matters, the sequence matters, but I mean the idea is basically the diagonalization, okay?  
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All right. So once you have a diagonalization like this, with a suitable 𝑆, 𝑆𝐷𝑆𝑇, then your 𝑥𝑇𝐴𝑥 

becomes 𝑥𝑇… Instead of 𝐴 I will put 𝑆𝐷𝑆𝑇, okay? Once I put 𝑆𝐷𝑆𝑇 here, I would get this and 

then I can define an 𝑠 which is 𝑆𝑇𝑥. And then what will happen to 𝑥𝑇𝑆? That will be 𝑠𝑇, okay? 

So my 𝑥𝑇𝐴𝑥 becomes 𝑠𝑇𝐷𝑠 and 𝐷 is diagonal, okay? And once 𝐷 becomes diagonal, I know 

that this 𝑥^𝑇𝐴𝑥 is simply 𝜆1𝑠1
2  + ⋯ + 𝜆𝑛𝑠𝑛

2, there are no cross terms in this form, okay? Once I 

get to the diagonalization, okay? So the change of variables that takes you from, you know, 



𝑥𝑇𝐴𝑥 gets… The change of variables that gets rid of all the cross terms in your quadratic form is 

strongly connected to the diagonalization and the spectral theorem like we studied for symmetric 

operators, okay? So you might say: what if 𝐴 is non-symmetric? This all, this does not go, but 

you remember how I showed you that any quadratic form can be written as 𝑥𝑇𝐴𝑥 where 𝐴 is 

symmetric, right? So it’s possible to do that. So symmetry is good enough. And this is a very 

nice way to get to the answer, okay? So you see that quadratic form simplification has some very 

nice connections to real spectral theorem, okay?  

 

So let us move on. The next, very interesting question with respect to quadratic forms is what is 

called constrained minimization and maximization of quadratic forms, okay? So… Okay. We 

have simplified 𝑥𝑇𝐴𝑥. We know how to simplify it. Can we put the simplification to some use, 

okay? In particular, can we find what is the maximum possible value for the quadratic form or 

the minimum possible value for the quadratic form with some constraint on 𝑥, okay? Now that is 

the sort of problem I have defined here. I am going to, I want to max
x

𝑥𝑇𝐴𝑥 with the constraint 

that ||𝑥|| = 1, okay? The same thing with minimization. So these are very interesting problems. 

They have a lot of applications. They show up quite often in practice, okay? So it's good to do it.  
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But why is this constrained? What if you do not put this constraint, you might ask. If you do not 

put the constraint, usually you will get zero or infinity, okay? So it depends on 𝐴, whether it's 

negative, non-negative and all that. But, so if you don't constrain, you can quite easily solve this 

problem. So it's not a big deal if you don't constrain. You can just drive it to infinity. You can 



take some examples and see that it's easy to drive it to ∞, −∞ or, you know, it may be 0, okay? 

So it is easy to do this if there is no constraint. So when there is constraint, it becomes more 

interesting, okay? So another way to view this problem, if you do not like this constraint, if you 

want to think of some other version of this problem, is to look at this problem. You max
x

𝑥𝑇𝐴𝑥

𝑥𝑇𝑥
. 

Now 𝑥𝑇𝑥 is just ||𝑥||
2
, right? So you can push that into the 𝑥 and the 𝑥 here. So it’s, both of 

these are equivalent, okay? So there is no, it is not difficult to see that both these are equivalent. 

In case you are worried about it, you can you can do this. You can see, no? 
𝑥𝑇𝐴𝑥

||𝑥||
2, ||𝑥|| into ||𝑥||, 

right? And that is the same as, you know, I can write 
𝑥𝑇

||𝑥||
, okay, sort of, you know, hope you 

understand the notation, 
𝑥

||𝑥||
, okay? So this guy is the same as, you know, something with unit 

norm. So this now, this whole thing has unit norm, right? So whether you are maximizing over 

all 𝑥 or you are maximizing just 𝑥𝑇𝐴𝑥 with the norm being 1, it is the same thing, okay? So this 

problem is also equivalent. So this is something nice. So this sort of tells you the effect of 𝐴 on 

the 𝑥𝑇𝑥 , okay? You have a norm of 𝑥, what 𝐴 does to the quadratic form when compared to the 

norm of 𝑥, if 𝑥 is very large, what does it do? So this is, this ratio is meaningful in so many 

different ways, okay?  
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Here's a very simple classic example. You might have solved this problem in so many other 

ways before or you might have, you might be familiar with this. max
𝑥2+𝑦2=1

4𝑥𝑦 . 4𝑥𝑦 is clearly a 



quadratic form, okay? So this is the constraint that, you know, ||𝑥|| = 1. What is 4𝑥𝑦? This has 

a very simple interpretation of being rectangle of largest area inscribed within a circle. Think 

about why that is true, you know? You put a circle 𝑥2  + 𝑦2 =  1 describes the circle. Any 

(𝑥, 𝑦) that you pick on the circle, you know, (−𝑥, −𝑦), (𝑥, 𝑦), (𝑥, −𝑦), right? That's the 

rectangle. That area is 2𝑥 × 2𝑦, which is 4𝑥𝑦. So max
𝑥2+𝑦2=1

4𝑥𝑦. So this gives you that there are 

various methods to solve it and in this case it’s not very hard, right? You can change it to one 

variable, right? You can make y as √(1 − 𝑥2) and then you will get 4𝑥√(1 − 𝑥2) and then after 

that it’s only a single variable maximization problem. You can differentiate, equate to zero, you 

can do such things. So it is possible to do all that here using calculus. There are various other 

methods, also geometric etc. that you can use, okay? But the question here is how to generalize, 

right? How do I take, how do I take this problem and then sort of generalize it to 𝑛 dimensions, 

you know? Any quadratic form with this constraint, how do you solve, okay? 𝑛 dimensions, 

arbitrary 𝐴, okay? A quick thing I want to point out here. You can also check that without any 

constraint. Supposing I don't put 𝑥2  + 𝑦2  =  1. If you only want to max 4𝑥𝑦, you know what's 

going to happen, right? You can go to −∞, +∞ quite easily by choosing large and large and 

large values for 𝑥 and 𝑦, okay? Or positive, negative like that, right? So you pick it carefully, so 

you can drive it anywhere you like. So max and min without the constraint for quadratic forms is 

not so interesting. With the constraint it becomes very interesting, okay? So, anyway. So that is 

that sort of motivates the problem for you and the real spectral theorem is or the spectral theorem 

has a wonderful application in this context. We will see some quick applications and we will see 

how easily it solves the problem. And also, you know, getting rid of the cross terms is also very 

important here, okay? So you will see all that plays around.  

 

Okay. So here is how the spectral theorem is involved. We have the 𝑛 × 𝑛 real symmetric matrix 

and associated with that matrix is the orthonormal eigenvector basis. Again think of this 𝑒1 to 𝑒𝑛 

in terms of coordinates with respect to the standard basis. That's a, that's the easy way to write 

things down. It helps us to write things down very easily. So now once I know that, I know the 

spectral theorem tells me 𝐴 can be written as 𝜆1𝑒1𝑒1
𝑇 + ⋯, I forgot the 𝜆𝑛 there, okay, so the 𝜆𝑛 

should come there, 𝑒𝑛𝑒𝑛
𝑇. And this 𝜆1’s I will pick like this, okay? So I will pick 𝜆1 to be my 

largest eigenvalue. Then 𝜆2, then 𝜆3 so on to 𝜆𝑛, okay? So 𝜆1 is the largest eigenvalue of 𝐴, 

okay? 𝜆𝑛 is the smallest eigenvalue of 𝐴. It could be positive, negative, whatever. I do not care. 

But I know it is real, right? All eigenvalues for 𝐴 are real. Because it’s symmetric and then, you 

know, 𝜆1 is the largest eigenvalue. 𝜆𝑛 is the smallest eigenvalue, okay? So this is how it goes, 

okay? So this is 𝐴, this 𝜆𝑛 I’d forgotten here, so typo, you should put it there. 

 

Okay. So now let’s see how this can be used, okay? Now in a quadratic form, right? 𝑥𝑇𝐴𝑥. I'm 

going to think of 𝑥, right? So this is same as what we did with the diagonalization. I'm just 

describing it a bit differently. But this description helps you in the maximization more directly I 

think, okay? So you express 𝑥 in terms of the orthonormal basis {𝑒1, … , 𝑒𝑛}, okay? So 𝑥1 is its 



coordinate with the, of 𝑒1, 𝑥𝑛 is its coordinate of 𝑥 which multiplies 𝑒𝑛, right? So 𝑥 becomes 

𝑥1𝑒1  + ⋯ +  𝑥𝑛𝑒𝑛, right? So you basically express 𝑥 as a linear combination of 𝑒1 to 𝑒𝑛. I know 

this is always possible because this is the basis. And you get 𝑥1 to 𝑥𝑛. So clearly ||𝑥||
2
 is 𝑥1

2  +

⋯ +  𝑥𝑛
2. Is that okay? So why is this important? So, because I am going to constrain my norm to 

be 1, okay? So this 𝑥1
2  + ⋯ + 𝑥𝑛

2 have to sum up to 1, okay? So this is something that has to 

happen. So now what is 𝑥𝑇𝐴𝑥, okay? You put 𝐴 in this form and 𝑥 in this form and you 

substitute 𝑥𝑇𝐴𝑥 and simplify, you know what is going to happen, right? All the cross terms will 

disappear, you will get 𝜆1𝑥1
2  + ⋯ + 𝜆𝑛𝑥𝑛

2, okay? So now this is our problem, okay?  
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So I want to maximize this or minimize this, okay? Let us look at maximizing this with the 

constraint that this is equal to 1, okay? And what do I know? I know this guy, okay? This is very 

important, okay? 𝜆1 is the largest, okay? So if I want to maximize this, what should I do? I 

should make sure that whatever multiplies 𝜆1 is as large as possible, right? Right? That would 

give me the maximum value for this summation because there is nothing else, you know, that's 

confusing this. Every term is just 𝑥1
2, … , 𝑥𝑛

2, right? It's all positive, every term contributes, in 

some sense, positive, and then the 𝜆 gets multiplied by a positive number only, right? So 𝜆1 is 

getting multiplied by 𝑥1
2 which is positive. So if I want to maximize this sum, I want to, I want to 

make sure that 𝑥1 is as large as possible, right? Now suppose I do not put any constraint on 𝑥. I 

can make 𝑥1 ∞ or something very large. And then just simply the sign of 𝜆1 will sort of 

dominate what happens, whether in maximization or minimization. Let's say 𝜆1 is positive there, 

right? So then if you want to maximize, you simply let 𝑥1 become larger and larger and larger, 



you will get plus infinity, right? So that's what will happen, okay? But we have this constraint 

that 𝑥1
2 + ⋯ + 𝑥𝑛

2 = 1. So what is the largest possible value that 𝑥1 can take? That is 1, right? 

Largest… So we want to set 𝑥1 as large as possible to maximize, right? Okay? So that is the 

main story. And given the constraint, okay, since ||𝑥|| is constrained to be 1, largest 𝑥1 equals 1, 

okay? So you cannot go above 1, okay? So the largest 𝑥1 you can put is 𝑥1 equal to 1. And once 

𝑥1 becomes 1, what happens to 𝑥2 to 𝑥𝑛? All of them become zero, okay? So this corresponds to 

𝑥1 = 1 and that implies 𝑥2  =  𝑥𝑛  =  0, and that implies 𝑥 = 𝑒1, isn't it? So if you put 𝑥1 is 1, 

everything else is 0, 𝑥 becomes 𝑒1. So to maximize 𝑥𝑇𝐴𝑥 under the constraint ||𝑥|| = 1, you 

simply have to pick 𝑥 = 𝑒1 and the maximum value will be equal to 𝜆1. It cannot go above it, 

okay? So that's a very simple result that you get once you get this form. If you did not have this 

form, if you had 𝑥1𝑥2, 𝑥1𝑥3 and all, you can't make these easy calculations, okay?  
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So notice how the spectral theorem is playing a huge role here, okay? So the constrained 

max
𝑥,||𝑥||=1

𝑥𝑇𝐴𝑥 is simply 𝜆1 and it's achieved at 𝑥 =  𝑒1. That's it, okay? How simple is it to solve 

this using the spectral theorem, right? So there is no calculus, there is no differentiation, there is 

no… Nothing more is involved, just the answer comes out very cleanly using the spectral 

theorem, okay? The same thing can be very easily done for the constraint minimum, right? 

Supposing you want to minimize, what should you do, right? I want to make 𝑥𝑛 as large as 

possible, right? Anything else I do will only increase my quadratic form’s value, right? 𝑥𝑛 should 

be as large as possible. So you pick 𝑥 = 𝑒𝑛. So 𝑥𝑛 is 1, everything else is 0. And the minimum 

becomes 𝜆𝑛, okay? So maximizing and minimizing quadratic forms with a constraint is quite 



easy and that simply is directly connected to the maximum eigenvalue of 𝐴 and minimum 

eigenvalue of 𝐴 and achieved at the corresponding eigenvectors, okay? The maximum, the 

eigenvector corresponding to the maximum value or the eigenvector corresponding to the 

minimum value, okay? Simple enough, right?  
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So we can further constrain the problem. So let us say I am not interested in the maximum 

eigenvalue, right? So I don't care so much about the maximum eigenvalue. I want to make sure 

that I am not in any way related to the maximum eigenvalue, okay? So you may have a problem 

like that, okay? So this basic problem I may want to put an additional constraint saying < 𝑥, 𝑒1 > 

has to be 0, okay? So I do not want anything to do with the maximum eigenvector. I do not want 

to be anywhere near there but I want to maximize the quadratic form given the constraint that 

||𝑥|| = 1 but < 𝑥, 𝑒1 > = 0, okay? Even these kinds of problems are easy enough to do, right? 

So if you just think about this problem, just fundamentally, you have maximization of a 

quadratic form, degree two, right? (𝑥1, 𝑥2). What are the constraints? There is a degree two 

constraint and a degree one constraint, okay? So it's sort of complicated from a pure calculus 

point of view if you think of it as an optimization problem. But because of the special properties 

of quadratic forms and because of the spectral theorem, even these kinds of problems have a 

very, very simple solution. What do I do? If I know < 𝑥, 𝑒1 > is 0, then I know 𝑥 has to have this 

form, right? 𝑥 has to belong like this. The 𝑒1 is 0, everything else is non, could be non-zero and  

||𝑥|| will simply be 𝑥2
2  +  … +  𝑥𝑛

2. And 𝑥𝑇𝐴𝑥 is this, right? And what is the maximum among 

this? 𝜆2, okay? So the constrained optimization is quite easy to do. You see that its 𝜆2 and it’s 



achieved at 𝑥 =  𝑒2, that's it, okay? So these are all easy and nice results that one can get using 

the spectral theorem when you are maximizing with some constraint, when you are maximizing 

the quadratic forms, okay?  

 

So we have seen simplifying quadratic forms and maximizing quadratic forms. Spectral theorem 

simplifies matters tremendously. So you can do this in general for any size, right? So that is the 

power of this. So there is an analogous way to think of complex also, and, you know, self-adjoint 

matrices and all that. The same thing goes through, there is no problem there except that, you 

know, you have to write it in a bit more complicated language. So I have chosen this simple one 

for description, okay? All right. The next couple of things I want to point out, I'll go through a bit 

faster, and these are not… Slightly advanced ideas, not so important, but I want to point out how 

easy it is to use the ideas we have discussed to quickly provide definitions at least and give you 

some motivation for why these are interesting from a theoretical point of view, okay? Supposing 

I have an 𝑚 × 𝑛 matrix. People associate a norm with the matrix, okay? So, so far we've been 

thinking of norm with vectors. You can also associate a norm with operators, okay? So 𝐴 of 

course represents an operator. I am thinking of it in the matrix representation, think of it as an 

operator only if you want. So the norm of 𝐴, denoted ||𝐴||, you define it like this. It’s a 

max
𝐴𝑥,||𝑥||=1

||𝐴𝑥||, okay? So there is a good motivation for why this is defined this way, okay? So 

you look at all 𝑥 which have norm 1 and look at how much 𝐴 increases that norm, right? 𝐴𝑥 is a 

vector, right? But remember, 𝐴𝑥 is a vector in 𝔽𝑚, right? 𝑥 is a vector in 𝔽𝑛, okay? So, but still, 

you know, it's a vector. So if you, if you start with norm 1 vectors, how much does 𝐴 increase 

norm by, okay? So it's sort of like a reasonable thing to know, right? If you have an operator, you 

want to know how much, you know, amplification it's doing to norm, right? So that represents 

the norm of the operator, okay? 𝑥 has a norm, 𝐴𝑥 has a norm. What is the norm of 𝐴? It is the 

maximum amplification it can do to norm, okay? So there is a sense in which this works out, you 

know? Just like we looked at before. ||𝐴||, instead of doing the constraint of ||𝑥||  =  1, you can 

say max
𝑥

||𝐴𝑥||

||𝑥||
, okay? So it's the same thing because it's linear, you can push this 𝑥 inside. So you 

have norm of, you can think about why this is well defined. So this is going to work out and this 

is correct, okay? So this and this are the same. So in this sense, ||𝐴|| represents the maximum 

amplification that 𝑥 will get from 𝐴, okay? So that is the norm, okay? That is good to know. So 

maximum increase, but this is maximum, you know, multiplicative increase, sort of maximum 

amplification, okay? So there is another way to write this. People write this also differently. So 

this implies, you know, ||𝐴𝑥|| ≤ ||𝐴||||𝑥||, okay? If you know what ||𝐴|| is, ||𝐴|| plays this kind 

of a role, okay? So quite often you want to know after operating with 𝐴 how bad can my norm 

be, how big can be norm be, that gets bounded by ||𝐴||||𝑥||, okay? So that is why this is very 

interesting in practice. One might also want to look at the minimum, okay? Even though we do 

not look at that too much from the norm, the minimum does not play at all, but the minimum in 

practice can also play a role, you know? How much will 𝐴, you know, what is the opposite of 

amplification, whatever, that is how much 𝐴 reduces the norm of 𝑥, okay? So that also might be 



interesting from some point of view, okay? Anyway. This is norm. I don't want to go too much 

into why norms are useful, but you can see that this is well defined and one can look at how to 

operate with it, okay?  
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Once again the spectral theorem comes to our rescue in characterizing norms in terms of 

eigenvalues and eigenvectors. But remember, 𝐴 is 𝑚 × 𝑛, where will eigenvalues come from, 

okay? So notice how they enter the picture here. So there is a connection between matrix norm, 

quadratic forms and all we have been studying. So for that, you just look at norm squared, right? 

So norm squared is going to be max||𝐴𝑥||
2

 , okay? So once you go to ||𝐴𝑥||
2
, I can write in 

terms of inner product, right? Now ||𝐴𝑥||
2
 is < 𝐴𝑥, 𝐴𝑥 >. What is < 𝐴𝑥, 𝐴𝑥 >? It's 𝑥𝑇𝐴𝑇𝐴𝑥, 

isn't it? Okay? So it's quite easy to see why this is true. So this is nothing but a quadratic form 

defined by 𝐴𝑇𝐴. Notice 𝐴𝑇𝐴 is symmetric. It is in fact even positive, okay? So we can come to 

that later. We know its operator-adjoint product, right? So it is a positive operator, it is so 

symmetric, definitely. So this 𝑥𝑇𝐴𝑇𝐴𝑥 is a quadratic form now. So this problem of computing 

norm for an operator is actually the same as constrained maximization of a quadratic form, okay? 

So all these problems are sort of similar and they are all defined from the same sort of 

assumption and they all tie up into the eigenvalue of symmetric operators, okay? So it’s all very 

interesting how these things show up. So that's something to keep in mind. So while we define 

norm as some, you know, maximum amplification that is produced by an operator on the vector 

𝑥, it is the same as the maximum quadratic, you know, quadratic form that can take with the 

constraint. And the quadratic form is defined by 𝐴𝑇𝐴 even though 𝐴 is 𝑚 × 𝑛, 𝐴𝑇𝐴 is going to 



become 𝑛 × 𝑛 or something like that, okay? So you get something very reasonable here, okay? 

So let us say the largest eigenvalue of 𝐴𝑇𝐴 is 𝜆𝑚𝑎𝑥(𝐴𝑇𝐴), and that's going to be non-negative, 

right? So because it's positive, it's a positive operator, all its eigenvalues are non-negative. So it's 

going to be greater than or equal to zero, okay? So from this we know what is the largest 

constrained maximization of 𝑥𝑇𝐴𝑇𝐴𝑥, it is simply 𝜆𝑚𝑎𝑥(𝐴𝑇𝐴). So this gives you a very succinct, 

clean formula for the norm of any operator 𝐴. The norm of any operator 𝐴 is √𝜆𝑚𝑎𝑥 of 𝐴𝑇𝐴, 

okay? So it’s a very clean nice relationship for the norm of 𝐴. And once again you can see the 

spectral theorem and positive operators and all of these things play a role here, okay? So that’s 

all I want to say about matrix norm. And maybe if you take some advanced courses in linear 

algebra, you would study more about matrix norms and its applications in general, okay?  
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So the last thing I want to point out in this lecture is basically, you know, an application of 

positive operators in optimization, okay? So this shows up when you look at smooth multivariate 

functions, arbitrary functions. Let us say some function 𝑓(𝑥1, … , 𝑥𝑛), each 𝑥𝑖 is a real variable 

let's say. But 𝑓 is smooth. What do I mean by smooth? I will assume it has continuous single and 

double partial derivatives. You know what partial derivatives are, right? Partial derivative of 𝑓 

with 𝑥1 or 𝑥2 or so on. And also double derivatives, you can define derivative, partial derivative 

twice, say with respect to 𝑥1, or once with respect to some 𝑥𝑖, and another time with respect to 

some other 𝑥𝑗, okay? So all these are continuous. We will assume so, you know, you have 

relationships like this being true, right? The partial derivative, if you do in any order, they will be 

equal, right? So when you are smooth, you can make all these assumptions, okay? All these are 



true, bounded, everything you can assume if you want. So basically smooth nice functions like 

this, when you want to optimize them… So optimize meaning you want to find… So now you 

have to sort of imagine in your head. So you have all this. Think of three dimensions or four 

dimensions or something. All these 𝑥1 to 𝑥𝑛 are living in this big space. At every point I've 

defined a function for you, okay? And this function is going to go up in some ways, come down 

in some way. If you're in any point (𝑥1, … , 𝑥𝑛), it may in, you can go in so many different 

directions and in every different direction this function may increase or decrease or behave in 

various ways, okay? Now I want to optimize this function. So if I want to find a point where this 

function, wherever we go, it's only going to go down, it's like a hill, you know? Hilltop, right? So 

you want to find maximum value or minimum value, okay? Bottom of a valley so to speak, 

right? So you come somewhere and then whichever direction you go, you can only go up, right? 

So I want to find those kind of points, local minima, local maxima they are called for a 

multivariate function. And this is a, this is at the heart of all optimization problems. Many 

engineering problems, wherever you do, ultimately you will end up with one big function of 

several variables and you want to find local maxima, local minima, understand this function, 

understand the landscape of this function, how does it look from different points of view. So this 

is a crucial thing in all engineering applications, okay?  
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So what is the connection between this and linear algebra and positive operators? Here is the 

connection, okay? So we won't prove this result, it's way beyond the scope of this class, I'll just 

point it out and later on if you take a course in optimization you will study more about this. The 

first thing is: there is this notion of critical points for such functions. What are the critical points? 



The points at which all partial derivatives vanish, okay? So the derivative with respect to one 

variable is, sort of tells you how the function behaves if you move in that direction, right? So if 

my derivative goes to zero, it means that function is not really changing that much in that 

direction, okay? Neither increasing nor decreasing, right? So that's sort of what this means. It's 

sort of flat in that direction. Now if all partial derivatives are 0, in all directions it has that 

behavior, okay? So you expect something to happen there, right? In all directions I am not seeing 

any increase or decrease, right? So that should correspond to a local minimum, local maximum, 

or it could also correspond to something called a saddle point, okay? So the saddle point is a 

little bit more complicated. As in local maximum means everywhere it decreases, right? Local 

minimum means in, everywhere, in every direction you go, it only increases. But saddle point, in 

some directions it may increase, some directions it may decrease, okay? So it's sort of, it's a little 

bit more than a general point. You might say, okay, what is the difference between a general 

point and a saddle point? Saddle point is a critical point as in the partial derivatives vanish, okay? 

So it's sort of flattish, but in some directions it will go flattened up in some other direction it will 

go flattened down, okay? So that's why you can imagine the saddle on a horse, right? If you 

think of a horseback, and there is a saddle, in some directions you go down, some directions you 

go up, right? So that's the saddle point. It's still critical, as in the partial derivatives vanish. In 

general points the partial derivatives may not vanish. So there's no flat behavior in the 

neighborhood. But this has, this, it's not a maximum or a minimum, okay? So this is, classifying 

critical points into maximum minimum and saddle point is very important. You need to get a 

sense in your function of multiple variables, how it behaves in different points, okay? And once 

again linear algebra comes to your rescue through this notion of a Hessian matrix, okay?  
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This is the hessian matrix. It is, basically you collect all the possible partial derivatives and put 

them together in a matrix, right? So for every 𝑥𝑖 and 𝑥𝑗, you have a double partial derivative, 

okay? You, might be 𝑥1
2. you put it on the diagonal. If it is 𝑥𝑖𝑥𝑗, you put it in the (𝑖, 𝑗)th element. 

𝑥𝑗𝑥𝑖 will be in the (𝑗, 𝑖)th element, okay? Because of these continuous assumptions, okay? It is 

very reasonable to expect the Hessian to be symmetric, okay? For most functions, you will get a 

symmetric Hessian, okay? So this symmetric operator or matrix, at every point you can evaluate 

it, right? Of course, in the critical points also you can evaluate it, okay? So all this is sort of 

similar to your double derivative method for detecting local maxima, minima, right? Functions 

of one variable you might have heard you would take a first derivative, if it is equal to zero you 

get critical points. And how do you find whether it's maxima or minima? You take the double 

derivative, okay, and check its sign. If it's, double derivative is positive it's a minima, double 

derivative is negative it's a maxima. So sort of like that, this is the extension or generalization of 

that to 𝑛 dimensions. And positivity of the symmetric operator now will play a role, okay? In one 

dimension, it was just positivity or negativity of the double derivative at the critical point. Here 

you have to look at the Hessian at the critical point. It will be a symmetric operator. You have to 

check whether it is positive or not, okay? The result, which is true, we won't prove this, is that a 

local maximum at the critical point if Hessian is negative definite, local minimum at a critical 

point if Hessian is positive definite at that point, and if it is neither positive nor negative, it can 

also happen right, then, all operators need not be positive definite or negative definite, then you 

get a saddle point, okay? So this is a nice characterization, and this is how positive operators, the 

notion of positivity in operators is used in optimization. And if you take further courses in 

optimization, you will see such ideas explored in great detail. Maybe you will see a proof for this 

result. So you will see all that, okay? That's the end of this lecture. Hopefully this lecture gave 

you a sense of how these, you know, spectral theorems are not just idle theoretical results, these 

characterizations are very powerful. They’re powerful in optimization of simple things in some 

sense like quadratic forms and even more complicated arbitrary functions, as long as they are 

smooth in some way, okay? Thank you very much. 


