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Singular Value Decomposition 

Hello and welcome to this lecture. We will study what's called singular value decomposition in 

this lecture. In the previous lecture, we saw definitions of singular values of an operator, of a linear 

map and singular vectors of a linear map, right? Right singular vectors and left singular vectors. 

And there was this very interesting relationship between the map and its right singular vectors and 

its left singular vectors and their singular values, right? So that was something we did not prove in 

the previous lecture. We just saw it. And we will prove that in this lecture, okay? So it is mainly a 

proof of what is called Singular Value Decomposition in this lecture, okay? I'll skip the recap. We 

saw it in the previous lecture. The main idea is that this definition of singular values and vectors 

which is basically eigenvalues and eigenvectors of 𝑇∗𝑇, okay? Singular values and singular vectors 

of 𝑇 are basically eigenvalues, eigenvectors of 𝑇∗𝑇 and 𝑇𝑇∗ also, right? The left singular value is 

that of 𝑇𝑇∗, okay?  

Okay. A few preliminaries before we formally describe singular value decomposition. I will 

describe it in two ways, one with respect to matrices. It's very popular to study singular value 

decomposition purely as a matrix sort of result. We'll also see an operator sort of version and 

finally we'll prove it in the operator version. That's where we'll prove it, okay? So a few basic 

ideas. Many of these ideas you must already know but I am just trying to reinforce them because 

these will show up in the definition. And you may not be surprised when you see it in the definition. 

First is that of a unitary matrix. We've already seen this before. We've seen isometries and we saw 

that unitary matrices represent isometries, unitary operators, right? These are isometries. The basic 

definition is: an 𝑛 × 𝑛 matrix 𝑉 is said to be unitary if its columns are orthonormal, okay? So 

another way of writing it is 𝑉𝑉∗ must be the same as 𝑉∗𝑉 and that should be equal to the identity 

matrix 𝐼, okay? So 𝑉∗ is basically conjugate transpose. From here you also see that 𝑉∗ is 𝑉−1, 

right? So that's also something that's important, okay? Inverse is the same as conjugate transpose, 

right? This 𝑉∗ is conjugate transpose and inverse is the same as that. The product is one. So these 

are unitary matrices. And unitary matrices, like I said, represent isometries. So isometries are pretty 

much… I always say they don't do much in some sense, right? So they don't change your landscape 

in anything, in a significant way, right? They take, you know, they preserve norms, they preserve 

inner products, you know? It's almost like a rotation. So you're not changing much when you do 

an isometry in some sense. It's sort of like an equal thing, okay? So that's one way of thinking 

about it.  



Another notion we'll need is this notion of rectangular diagonal matrices. We know what square 

diagonal matrices are, right? So we know the main diagonal, it is easy to talk of diagonals with a 

square matrix. But with rectangular matrices, how do you describe diagonals? It's not very 

different. So even if you have a rectangular matrix, simply drawing a rectangular matrix here, this 

would be the main diagonal, okay? So this is the main diagonal, okay? Basically (1, 1), (2, 2), so 

on. So even if you have a tall matrix like this, the definition of diagonal is the same, okay? So if 

you have 𝑚 × 𝑛, this is diagonal. If you have 𝑚 × 𝑛, 𝑚 being larger also, that's diagonal, okay? 

So this is the main diagonal. (1, 1), (2, 2), etc. okay? So when do I say a rectangular matrix is a 

diagonal matrix? It’s only if the non-zero values, if they show up only on the diagonal, then the 

rectangular matrix is also called the diagonal matrix, okay? So this is a convention that we will 

use. Both these unitary matrices and such rectangular diagonal matrices will show up in the 

description of the singular value decomposition, okay? So that is why we need this. So these are 

preliminaries. Hopefully it's clear, okay?  
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So here is the singular value decomposition in terms of matrices, okay? So this is also a very 

popular way in which it's described anywhere that you read it. So I think it's good to see it with 

matrices first and then we'll go to the operator view and then we'll prove it, okay? So if you have 

an 𝑚 × 𝑛 matrix, we know that there are singular values for this which is the eigenvalues of 𝐴∗𝐴 

or 𝐴𝐴∗, right? So both of these we know the non zero eigenvalues are the same and the zero 

eigenvalues will differ depending on the rank and size and all that, okay? Then you have right 

singular vectors. These are the orthonormal eigenvectors of 𝐴∗𝐴, okay? Now, I mean, there is no, 



there is some ambiguity about uniqueness here. I mean, so orthonormal eigenvectors when you 

have repeating eigenvalues, it's not unique, isn't it? So you can have multiple types of orthonormal 

eigenvectors. And so right singular vectors also are defined in that fashion. You can have different 

sets of right singular vectors, okay? Same thing with left singular vectors. These are orthonormal 

eigenvectors of 𝐴𝐴∗, okay? So 𝐴∗𝐴 and 𝐴𝐴∗, okay? So since 𝑚 can be different from 𝑛, these are 

all different things in some sense, okay? That's the setup.  
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And the SVD is basically a decomposition of 𝐴 into the product of three matrices, okay? So SVD 

singular value decomposition basically states that there exists an 𝑚 × 𝑚 unitary matrix 𝑈 and 

𝑛 × 𝑛 unitary matrix 𝑉 and an 𝑚 × 𝑛 diagonal matrix 𝐷 such that 𝐴 can be decomposed or written 

as a product of three matrices. And all three, right? So 𝑈𝐷𝑉∗, okay? So you know 𝑉∗ is the 

conjugate transpose or the inverse of 𝑉. And then you have 𝐷 and then you have 𝑈, okay? So it's 

a product of these three matrices. So now if 𝑉 is unitary, 𝑉∗ is also unitary, right? Okay? 𝑉∗ is also 

unitary. So when you write 𝐴 as the product of these three matrices and when you apply, you 

know… So when you do 𝑈, so when you do 𝐴𝑣, it's or maybe 𝐴𝑥, its 𝑈𝐷𝑉∗𝑥, okay? So when you 

apply 𝐴 on 𝑥, or 𝑥 is input to this transform 𝐴, and then you do 𝐴𝑥 to get the output, you can 

equivalently do it first by multiplying with 𝑉, okay? And this guy is just, you know, it does not 

change 𝑥 that much, it’s just a unitary transform, okay? So at this point, okay, the vector that you 

would have, right, 𝑉∗𝑥 is sort of a change of basis to columns of 𝑉, okay? So that is what this 𝑉∗𝑥 

is going to do. And then you do 𝐷𝑉∗𝑥 and 𝐷 is diagonal, right? So it's just going to be scaling of 

the coordinates at this point. And then you multiply by 𝑈. And what is multiplication by 𝑈 again? 



It's again a change of basis, isn't it? Change of basis to the, so you've gone to a different basis here. 

So then you multiply by 𝑈. So remember this is gone to from, you know, from 𝔽𝑛 → 𝔽𝑚, right? 

So after multiplication by 𝐷 it is only an 𝑚 length vector, right? And that 𝑚 length vector, I don't 

know. It gets multiplied by 𝑈 now, there is a further change of basis by this unitary matrix 𝑈. And 

what does unitary matrix do? Nothing much, right? So it's sort of like… I shouldn't say nothing 

much, should be careful here, so it's just sort of rotates or something like that. It doesn't change the 

the metric or norm doesn't change, so it just gets multiplied by that. So any 𝐴, however complicated 

it may be, always decomposes like this. Unitary multiplied by diagonal multiplied by unitary, 

okay? So that is the idea. So once you see that, you will see how interestingly one can work with 

this. So it's very very promising and it has so many different applications etc. But this is the main 

SVD result, okay? So any matrix 𝐴 can be written as a product of 𝑈𝐷𝑉∗ where 𝑈 and 𝑉 are unitary 

of suitable dimensions 𝑚 × 𝑚 and 𝑛 × 𝑛 and 𝐷 is diagonal, okay? Diagonal, rectangular diagonal 

matrix 𝑚 × 𝑛, okay? So that's the interesting part.  

(Refer Slide Time: 13:34) 

 

So once again what are these 𝑈, 𝑉 and 𝐷? For 𝑈, the columns are left singular vectors. For 𝑉, the 

columns are the right singular vectors. And for 𝐷, it has the singular values of 𝐴 on the main 

diagonal, okay? So this also is an important result, okay? So you have the existence of these three. 

And how do you find these three? 𝐷 simply needs the singular values. 𝑉 needs the right singular 

vectors and 𝑈 needs the left singular vectors. That's it, okay? So simple enough in a way to look 

at, okay? And you get the answer you want, okay? So this is SVD in terms of matrices. You look 

up any book or website or something, this is how SVD is described. And this simple, I mean, we 



will see more more detailed applications later on and you will see this kind of decomposition is 

very very very powerful. So see if you have a self adjoint matrix or self adjoint operator 𝐴, then, 

you know, you can write it as 𝑉𝐷𝑉∗, okay? So that is really very powerful. And we saw so many 

different applications of that. Now here the 𝑈 has changed, right? So in fact this result you can 

also use it for a square matrix. Supposing 𝐴 is an 𝑛 × 𝑛 matrix and maybe it is not self adjoint, 

then what happens? You can write 𝐴 as 𝑈𝐷𝑉∗. It's not 𝑉𝐷𝑉∗, 𝑈𝐷𝑉∗ and 𝑈 is still unitary, okay? 

So it's not by much except that, you know, you view it in a different axis which is all orthonormal. 

The operator becomes diagonal, okay? So that's the powerful statement here, okay? So this is SVD 

in terms of matrices.  

And let us see a quick example to firm up matters here. So this is an example we have seen before, 

okay? This 2 × 3 matrix [1 2 3;  4 5 6]. We computed the singular values, we computed the right 

singular vectors, left singular vectors. And then using this you can check that 𝐴 will work out as 

this product, okay? So we have seen this before. This is how 𝐴 will work out to be, okay? So you 

can check this again. Hopefully this is correct. So I have not made a mistake here. So you will get 

𝐴 to be the product of these three things, okay? So notice something that is very interesting. If I 

change basis, right… So this 𝐴 was in the standard basis. Let's say standard basis is for 𝔽3 and 

standard bases for ℝ3 and standard bases for ℝ2, okay? So it's in the standard basis. Now if I 

change basis of ℝ3 to {𝑒1, 𝑒2, 𝑒3}, okay, remember this matrix is [𝑒1 𝑒2 𝑒3]∗, right? So conjugate 

transpose. So 𝑒1 comes on the first row, 𝑒2 comes on the second row, 𝑒3 comes on the third row, 

right? So this is that, okay? So this is like the inverse of that. So it takes from standard basis… So 

here the coordinates will be {𝑒1, 𝑒2, 𝑒3} basis, okay? That okay? So then you get an answer which 

is in {𝑓1, 𝑓2} basis, isn't it? So if you shift the basis to {𝑓1, 𝑓2}, here the answer is in {𝑓1, 𝑓2} basis. 

So here you go back to standard basis, okay? So in terms of coordinates, this is how you can think 

about it. You have an input coming in standard basis. When you multiply by this unitary matrix 

𝑉 ∗, you go to the bases {𝑒1, 𝑒2, 𝑒3}. The coordinates are in that basis and you do your linear map, 

right? So it is just a scaling at this point. You will get the coordinates in {𝑓1, 𝑓2} basis and then 

from {𝑓1, 𝑓2} basis you go back to the standard basis by multiplying by 𝑈, okay? So this is the 

description. So if you change bases to ℝ3 and ℝ2 and look for the matrix of 𝐴 in that basis, then 

you simply get a diagonal matrix, okay? So both these are equivalent as 𝐴 being written as… This 

and this are equivalent, right? So 𝐴 being written as 𝑈𝐷𝑉∗ and 𝐴 in the basis of columns of 𝑈 for 

our 𝔽𝑚 and then the columns of 𝑉 for 𝔽𝑛, it being just diagonal, both of these are exactly 

equivalent, okay? So that's sort of an example which sort of illustrates how SVD works in practice. 

So now this can work for even an arbitrary matrix. For any matrix you want, you find the singular 

values, find the right singular vectors, left singular vectors you have this decomposition. You go 

to the orthonormal basis dictated by the singular vectors then your linear map 𝐴 becomes diagonal, 

okay? So that is the power of this SVD.  
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Okay. So now we will do a restatement in terms of operators. We saw the example before, it’s sort 

of motivated by that. Let us say you have 𝑇: 𝑉 → 𝑊 being a linear map. Then you have a basis for 

𝑉, basis for 𝑊 and then you can think of a matrix for 𝑇 in this basis. So what is the matrix of 𝑇 in 

this basis? How will you write it? So supposing 𝐵𝑉 is {𝑣1, 𝑣2, … , 𝑣𝑛}. What is this? This is 

{𝑇𝑣1, … , 𝑇𝑣𝑛}. Each coordinates in basis 𝐵𝑊, okay? So all these things are coordinates in basis 

𝐵𝑊, right? So this is your matrix 𝑀(𝑇, 𝐵𝑉, 𝐵𝑊), right? So this is the matrix. So given a basis for 𝑉 

and basis for 𝑊, you can come up with a matrix. So typically people take the standard basis for 𝑉 

here, standard basis for 𝑊 and give you a matrix 𝐴, right? So but for an arbitrary basis also this is 

what you do, okay? Hope this is clear, okay? So now what does SVD tell you? SVD tells you that 

there exists an orthonormal basis 𝐵𝑉 and an orthonormal basis 𝐵𝑊 such that 𝑀(𝑇, 𝐵𝑉, 𝐵𝑊) is 

diagonal, okay? So it will be generally a square matrix, a rectangular matrix, but that rectangular 

matrix will be diagonal, that's what this SVD tells you. Moreover, 𝐵𝑉 is basically the right singular 

vectors, 𝐵𝑊 can basically be the left singular vectors, a set of left singular vectors, 𝐵𝑉 is a set of 

right singular vectors. And this 𝑀(𝑇, 𝐵𝑉, 𝐵𝑊) not only is diagonal, but it has the singular values 

on the diagonal, okay? So that's more interesting results about what the SVD says, okay? So this 

is a restatement of SVD in terms of operators and this is what we will prove, okay? So we will 

prove this in the next few slides. Proof is going to be fairly involved. It is one of the longest proofs 

maybe we have had in this class. It just breaks up the ideas into smaller segments. None of the 

ideas themselves are complicated. It’s just viewing them from the right point of view and carefully 

tracking what happens, okay? So let us get into the proof, okay?  
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So a crucial role is played by 𝑇∗𝑇 and √𝑇∗𝑇, okay? So a very important lemma in the proof is the 

following, okay? So I have always been commenting about how 𝑇 and √𝑇∗𝑇 are sort of the same 

in some sense, right? So I keep saying that all the time. So they give you a sense of being the same. 

So we saw from the null space, range space and all that, a lot of them are similar. The null spaces 

are the same, range spaces are the same. So there's lots of similarity. Range space is not the… You 

know what I mean. So null space is the same. So it's all, it's got a lot of similarity, these two 

operators, right? 𝑇 and √𝑇∗𝑇.  

So here is this lemma which again brings out one more very interesting result, right? The norm of 

𝑇𝑣 equals norm of √𝑇∗𝑇𝑣, okay? So when when you hit both 𝑇 and the √𝑇∗𝑇 with the 𝑣… 

Remember this 𝑇𝑣, okay? So it is important to remember this 𝑇𝑣 actually belongs to 𝑊 and this 

guy belongs to 𝑉, right? So these two belong in two different vector spaces but their norms are the 

same, okay? And you can sort of quickly see that proof. The proof is not very difficult at all. This 

is a very easy proof. Just any algebraic manipulation proof is very easy, isn't it? So you just bring 

this to this side. 𝑇∗𝑇. Write it as square root, square root. And how did I do this? What is the final 

step? Reason for the final step? This is because, how did this happen? This is because √𝑇∗𝑇 is self 

adjoint, right? Since it’s self adjoint. if you push it to this side, you get the same operator. So the 

norms are the same, okay? So this is the proof that these two are equal, okay? So this is very 

important. The fact that, you know, 𝑇𝑣 and √𝑇∗𝑇𝑣 have the same norm, this will play a crucial 

role in SVD and its proof. Okay. So let’s take the range of 𝑇 which is the set of all 𝑇𝑣 ∀ 𝑣 ∈ 𝑉, 



right? This is the range of 𝑇. And range of 𝑇 we know is a subset of… Again do not forget this is 

a subspace of 𝑊, right? And what about range of √𝑇∗𝑇? This is again set of all √𝑇∗𝑇𝑣 for 𝑣 ∈ 𝑉. 
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And this is a subspace of 𝑉, isn't it? So this is a subspace of 𝑉 and both of these we know have the 

same dimension, right? So that's one of the results we saw in the previous lecture. These two have 

the same dimension. And now we have seen that, you know, 𝑇𝑣 and √𝑇∗𝑇𝑣 have the same norm 

etc. and… So it turns out one can define this very interesting map 𝑆 from range of √𝑇∗𝑇, from this 

set, to this set, range of 𝑇. How will I define this interesting little map 𝑆? I will simply take √𝑇∗𝑇𝑣 

and map it to 𝑇𝑣, right? Remember once again, every element of range of √𝑇∗𝑇 is of this form: 

√𝑇∗𝑇𝑣 for some 𝑣. As you keep changing 𝑣, this thing will presumably change, okay? Same thing 

happens here. As you keep changing 𝑣, this 𝑇𝑣 also changes. I will take the √𝑇∗𝑇𝑣 and map it to 

𝑇𝑣, okay? So remember √𝑇∗𝑇𝑣 belongs to 𝑉. I mean it's in that vector space. 𝑇𝑣 belongs to 𝑊, 

it's in the other vector space. So this is the mapping that I am going to do. 𝑆 goes from range √𝑇∗𝑇 

to range 𝑇, okay?  

Now this 𝑆 has so many, very many interesting properties. I am going to just put down all those 

properties and then maybe draw some other pictures to describe what is going on, okay? So notice 

what is going on here. So you have 𝑉 and you have 𝑊. You have range 𝑇. So this takes you to, 𝑇 

takes you from here to the range. And then you have, how will √𝑇𝑇∗ work, okay? So it will have 

some other thing here. This is going to be range √𝑇∗𝑇, okay? It takes you from, you know, 𝑉 → 𝑉, 



right? So it goes from 𝑉 → 𝑉. Maybe I should write it like that. √𝑇∗𝑇. And that will be the range, 

right? It will go to this from 𝑉, it will go directly to that, okay? So this is the sort of picture if you 

want. In case you like pictures, you can keep that in mind. And what is this mapping? So if you 

have a 𝑣 here, 𝑣 went to something like this under 𝑇, right? So this would be 𝑇𝑣. And this 𝑣 would 

go to, sorry, this 𝑣 would go to some place here under √𝑇∗𝑇, right? So this point here would be 

√𝑇∗𝑇𝑣. And what is 𝑆 going to do? 𝑆 is going to take this guy to this, okay? So this is that picture. 

Hopefully this picture is clear to you, okay? So you have 𝑉 and 𝑊. 𝑇 is a mapping that takes you 

from 𝑉 to range of 𝑇 inside 𝑊. √𝑇∗𝑇 is a mapping that takes you from 𝑉 to range of √𝑇∗𝑇 which 

is inside 𝑉. Now if you take a particular vector 𝑣, 𝑇 will take you inside range 𝑇, √𝑇∗𝑇 will take 

you inside range, the corresponding range there. This 𝑆 is basically a map that maps this guy to 

that guy, okay? After the multiplication, okay? So this is a picture if you want you can keep in 

mind.  
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So the first thing is: 𝑆 is well defined, okay? If you have two different 𝑣s, 𝑣1 and 𝑣2 that went to 

the same point, okay? Then they will go to the same point under 𝑇 also, okay? So this is something 

you can show. So it is not very difficult. So this implies √𝑇∗𝑇(𝑣1  − 𝑣2)  =  0 which implies 

(𝑣1  −  𝑣2) is in null √𝑇∗𝑇 which is equal to null 𝑇 and that implies this, right? So these two are 

equal, the null 𝑇 and null √𝑇∗𝑇 are the same. So null of 𝑇, (𝑣1  − 𝑣2) belongs to null 𝑇. So 𝑇(𝑣1  −

 𝑣2)  =  0. 𝑇𝑣1  =  𝑇𝑣2. So this map is well defined, okay? So if you have two different vectors 



going to the same point under √𝑇∗𝑇, they also go to the same point under 𝑇, okay? So it is well 

defined, okay?  

So this also shows you this kind of a manipulation. Okay 𝑆 is linear is not too bad to see. The other 

thing you can quite quickly see is that 𝑆 is one to one and it's also onto, okay? So it's sort of like a 

one-to-one and onto map, it's injective surjective, it's like a, it's almost like an isomorphism in 

some sense, right? So between these two things. So that's what 𝑆 is. These are easy to prove. I'm 

not going to go into great detail here. But this you can hopefully see why this is true. The 

dimensions are also the same, no? So the range of √𝑇∗𝑇 and range of 𝑇 have the same dimension. 

So this is also easy to see, okay? So from the lemma. So this is just by lemma, okay? From that 

lemma you can see this result, right? So if you have a 𝑢 which belongs to range of √𝑇∗𝑇 and that 

𝑢 by 𝑆 goes to some point here in range of 𝑇, that 𝑢 and 𝑆𝑢 have the same norm, right? So that's 

the restatement of this result, right? Of the same lemma. 𝑢 and 𝑆𝑢 have the same norm, okay? 𝑆 is 

linear, 𝑢 and 𝑆𝑢 have the same norm, that is very interesting, isn't it? So when you have something 

that is linear and having the same norm, we know that this 𝑆 will also preserve inner products, 

okay? So, why? Because norms come from inner products or inner products come from norm, both 

of these are true. As long as 𝑆 is linear you know only summation 𝑢1 + 𝑢2, 𝑢1 − 𝑢2, 𝑆 times that 

will show up in the norm definition. So the inner products will also be the same. So this is sort of 

how we showed for isometries when they preserve norms, they also preserve inner products, right? 

So this 𝑆 is like an isometry from range √𝑇∗𝑇 to range 𝑇. So it will also preserve inner product, 

okay? So I am not going to prove this result, I’ll just write something. Inner product can be 

computed from norms, okay? I leave it like that. So this proof is easy enough to do. We have seen 

it in one other case. For the isometry case we have seen this. The same idea you can use to show 

that this map 𝑆 preserves the inner product. This is very very crucial. So notice all that we have 

done here. We have taken √𝑇∗𝑇 and then we have taken 𝑇. And we now have almost an isometry 

with… Well we don't quite define it as an isometry. Isometry is between one vector space to itself. 

This is like from a subspace to another subspace. We have a map which is linear, it preserves 

norms, it preserves inner products, okay? So this is very crucial. So once you have this, we can do 

something very interesting with it and the proof of the SVD will follow, okay? So this is important. 

A few ideas but the crucial idea is that the √𝑇∗𝑇 and 𝑇 are very similar in some sense, right? So 

and that's what this is establishing clearly.  

Okay. So let's continue with the proof. We have done most of the hard work. Now it is just a 

question of carefully arranging everything. It will work, okay? So now √𝑇∗𝑇 is also self adjoint, 

okay? Of course 𝑇∗𝑇 is also self adjoint. And both of them will have a nice common orthonormal 

eigenvector basis, right? So I will take that as {𝑒1, … , 𝑒𝑛}, okay? The corresponding eigenvalues 

will be the singular values of 𝑇, right? √𝑇∗𝑇, if you take the eigenvalues of √𝑇∗𝑇, they will be the 

singular values of 𝑇. I will write them as 𝜎1 to 𝜎𝑛. Now let’s suppose this 𝑘 is the rank of √𝑇∗𝑇. 

It need not be full rank, isn't it? It can have some lower rank. So let's say 𝑘 is the rank. So when 𝑘 

is the rank… Remember it's a self adjoint matrix. So 𝜎1 to 𝜎𝑘 will be nonzero and after that you 



will have 0, right? There will be exactly 𝑘 non-zero eigenvalues. And after that it will be all 0, 

okay? So that is how for rank and the eigenvalues are connected. So this is how it will be. This is 

the first step, this setup is easy to do.  
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Now we will move on to the connection between range √𝑇∗𝑇 and {𝑒1, 𝑒2, … 𝑒𝑛} okay? So 

remember 𝑒1 through 𝑒𝑘 are eigenvectors of √𝑇∗𝑇, right? So what will happen? So maybe I should 

write this out. √𝑇∗𝑇𝑒1 for instance, is 𝜎1𝑒1, okay? So this clearly belongs to range √𝑇∗𝑇, okay? 

So 𝑒1 also belongs to the range of √𝑇∗𝑇. That is quite easy to see. And this will be true all the way 

till 𝑒𝑘, right? The same thing is true. Oh sorry, the other way. 𝑇∗𝑇𝑒𝑘 is 𝜎𝑘𝑒𝑘. And so this also will 

belong to range 𝑇. This will also belong to range 𝑇. So you have 𝑘 as the rank of √𝑇∗𝑇 and here 

you have 𝑘 orthogonal vectors, okay? So remember if I took 𝑒1 to 𝑒𝑘, 𝑒1 to 𝑒𝑘 will be an 

orthonormal basis of range √𝑇∗𝑇. Once I multiply by √𝑇∗𝑇, I will only get an orthogonal basis, 

because, the reason is the norm of these guys… I'll write down that in the next step. You will see 

the norm of each of these guys is actually slightly different from 1. I mean, so maybe I should 

show it to you. So you see that the norm of each of these guys, ||√𝑇∗𝑇𝑒1|| is basically 𝜎1, it's not 

it's not 1, okay? So you can't say orthonormal, it’s orthogonal basis of 𝑇∗𝑇.  

So now I do this 𝑆 map, right? So notice what I have done here. I have done the 𝑆 map. What will 

happen to 𝑇𝑒1, … , 𝑇𝑒𝑘, right? So this will also become an orthonormal basis of range 𝑇. Why is 

that? This is by property 4. What is property 4? The inner products are preserved by 𝑆, okay? So 



when you have this set being orthogonal in range √𝑇∗𝑇, this set 𝑇𝑒1 to 𝑇𝑒𝑘 will be orthogonal in 

range 𝑇 because this 𝑆 map that we are doing, going from √𝑇∗𝑇𝑒1 to 𝑇𝑒1 preserves norms, 

preserves inner products. Since it preserves norm, the norm of 𝑇𝑒𝑖 and the norm of √𝑇∗𝑇𝑒𝑖, right, 

both of them have to be equal to 𝜎𝑖, okay? So they will all be, the norms will be the same and 

they'll be 𝜎𝑖 and they'll also be orthogonal, okay? So this is the crucial idea, okay? So you have an 

orthonormal basis for the entire vector space 𝑉. Some of those vectors form an orthonormal basis 

for the range √𝑇∗𝑇. You simply scale them suitably to get to the √𝑇∗𝑇 form, just scale by 𝜎1 or 

something. And then you use the 𝑆, you go to range 𝑇 from range of √𝑇∗𝑇, okay? So that is very 

crucial. So you get an orthonormal basis. You go to orthogonal basis, you apply 𝑆, you go to 

orthogonal basis of range 𝑇, okay? So now how do I get an orthonormal basis from the orthogonal 

basis? You simply divide by the norm. And the norm is 𝜎1 etc. So you divide, okay? And you call 

this as 𝑓1 to 𝑓𝑘, okay? Notice how we have gotten this 𝑓. You got an orthonormal basis for the 

original vector space 𝑉, you assumed a certain rank, you went to the orthogonal basis for range of 

√𝑇∗𝑇. And then you did the 𝑆 map, went from √𝑇∗𝑇𝑒𝑖 to 𝑇𝑒𝑖. And you realize that will also be an 

orthogonal basis for the range 𝑇. Then you can divide by the magnitude you have, right? Magnitude 

of these guys that you have again by that lemma.  
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So you get this wonderful result. You have an orthonormal basis for the range of 𝑇 which is simply 

a mapping of 𝑒1 to 𝑒𝑘 under 𝑇. So that is the nice idea. This you can call as 𝑓1 to 𝑓𝑘. And once you 

do that, you can extend this 𝑓1 by 𝑓𝑘 to an orthonormal basis for the entire 𝑊. Find the orthonormal 



basis for range 𝑇 in this fashion and then you extend it to all of 𝑊 and this will give you all that 

you want, right? So in this basis if you pick the basis 𝑒1 and the basis 𝑓, you see that 𝑇𝑒𝑖, okay… 

So why is this diagonal? 𝑇𝑒1 is 𝜎1𝑓1, 𝑇𝑒2 is 𝜎2𝑓2, right? 𝑇𝑒𝑘 is 𝜎𝑘𝑓𝑘. What is 𝑇𝑒𝑘+1? All of them 

are zero, right? Okay? Why is that? √𝑇∗𝑇𝑒𝑘+1 is 0. So this 𝑇 will also be 0, okay? So this tells you 

that if you form a matrix for this basis, right, 𝑇 will be diagonal with respect to this basis. You 

have to write down 𝑇𝑒1, … , 𝑇𝑒𝑘, I'll put here then 𝑇𝑒𝑛, okay? How do you express this? This just 

to be expressed in the basis, in basis 𝑓_1 to 𝑓𝑚. And you see 𝑇𝑒1 is just 𝜎1𝑓1, so it will be just 𝜎1 

here, 𝜎2 here and so on till 𝜎𝑘 here. So it will be diagonal. Everything else will be 0. So 𝑇 becomes 

diagonal with respect to this basis. And the singular values show up exactly on the diagonal. So 

this relationship is crucial. 𝑇𝑒1 is 𝜎1𝑓1. So that's the crucial relationship that you have, that we have 

proved, okay?  

So the last part we have to show is that these 𝑓s should also be left singular vectors for 𝑇, right? 

How do you show that these are left singular vectors? I mean show 𝑇𝑇∗, if you multiply 𝑇𝑇∗ by 

𝑓𝑖, you will get, you know, 𝑓𝑖 is simply 
1

𝜎𝑖
𝑇𝑒𝑖, okay? So you plug that in, you multiply, you get 

𝑇∗𝑇𝑒𝑖. What is 𝑇∗𝑇𝑒𝑖? 𝜎𝑖
2𝑒𝑖, right? So it's like an eigenvector for 𝑇∗𝑇, right? And then you get 

𝜎𝑖
2𝑓𝑖, right? So this 𝑇 will come in. (

1

𝜎𝑖
) 𝑇𝑒𝑖 is 𝑓𝑖. So 𝜎𝑖

2𝑓𝑖. So 𝑇𝑇∗𝑓𝑖 is 𝜎𝑖
2𝑓𝑖. So 𝑓𝑖 are our left 

singular vectors for 𝑇, okay? So that is the idea.  
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So what has happened overall is: if you want a picture, okay, so you have 𝑉, we have 𝑊 here. 

There is an orthonormal basis 𝑒1, … , 𝑒𝑘, 𝑒𝑘+1, … , 𝑒𝑛. These guys are inside range √𝑇∗𝑇, okay? 

What happens when 𝑒 is applied to these guys? You have range 𝑇 here. When 𝑇 is applied to these 

guys, this goes to 𝑓1, all the way till this going to 𝑓𝑘, okay? And then all these other fellows under 

𝑇 go to zero, right? So zero will also be here. They all go to zero, okay? So this 𝑓1 to 𝑓𝑘 ends up 

being an orthonormal basis. That was my property of that nice little relationship, that map 𝑆 which 

which was like an isometry from range √𝑇∗𝑇 to range of 𝑇. And then you extend this guy to 𝑓𝑚, 

okay? You extend this. So now you have an orthonormal basis, orthonormal basis which gives you 

a diagonal for 𝑇. That's the idea, okay? So it's a crucial little, interesting little insight into how 

SVD works, okay? So that is the end of the proof and we have shown this existence of two 

orthonormal bases under which any linear map becomes diagonal, okay?  
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So final observations about the SVD, okay? So the notation is like in the previous proof. The first 

observation is: given that you have the product of, you know, 𝑓1s, diagonal, 𝑒1s, 𝑒1
𝑇 etcetera, you 

can write 𝑇 equivalently as this product, okay? So this is same as, you know, when you had the 

spectral theorem for self adjoint operators. We could write it in this form, right? 𝑓1 would be equal 

to 𝑒1, right, you would have got 𝑒1𝑒1
𝑇̅̅ ̅ etc. Now instead of 𝑒1, you will have 𝑓1. It’s the same three 

matrix product with diagonal in the middle, column, row etc. So this is that product. You can 

quickly show rank of 𝑇 is the number of non-zero eigenvalues, non-zero singular values, okay? 

Range 𝑇 is basically the orthonormal basis 𝑓1 through… Orthonormal basis for the range 𝑇 is this 

𝑓1 to 𝑓𝑘 and orthonormal basis for null 𝑇 is 𝑒𝑘+1 to 𝑒𝑛. So this SVD gives you all that you need to 



know about the linear map, okay? So in fact most numerical computations, you give any numerical 

package a matrix, 𝑚 × 𝑛 matrix, it will first compute the SVD and all the other things it will 

compute based on that. In fact you can project to the range, right? You find an orthonormal basis 

for range 𝑇. So that gives you the projection, right? Everything you want you can compute using 

the SVD, okay? So and the SVD has wonderful numerical methods today for computation. So it 

plays a very important role just in terms of numerical implementations and etc. And also several 

other applications. So so many interesting applications for SVD. In the next lecture we will see a 

couple of very interesting applications for SVD and that will be the conclusion of the course, okay? 

Thank you very much. 


