
  Now, when you actually train a network right, so one way to get a, one way to, a simple  

way to think about it is like this right.  I mean this is a nice example which you will find in 

you know most probably lectures right  if you have heard on ok.  So it is like this right, so 

suppose so what you are trying to do is the following let  us say right I mean I have got a few 

points ok like this ok, something like this ok.  Now this is all that I know that means I know 

that I know that right I mean you know for  some value of x right I mean there is some value 

of y for another value of x this is  y this is all I this is all this is all the data I have ok.  And 

through a network right what you are trying to do is so for example right so there is  some g 

of x right which probably you know which rules these points right I mean so there  is a true 

g of x which we do not know right.  And what you are what a network is trying to do is it is 

trying to figure out it what  how to best approximate that g of x ok. 

 

  But then the fact is g of x itself we do not know all that we know is we have sampled g  of x 

at certain points right we know that g of x has takes its value at this place right  so much at 

that place so much that is what we know.  But then we do not know g of x in its entirety and 

or anything right.  Therefore what can happen is right you can so when you have when you 

have you know a  network which is trying to get there now it can do it can do right 3 things 

one is this  ok what is called what is called and say under fitting ok.  So for example it could 

be it could just probably plot a straight line alright just take it  as a very you know very very 

naive sort of an example right. 

 

  So let us say that y hat simply does w x plus b right so here is x here is your y and you  

know y at some places and this is this is the simplest thing right which you can probably  do 

and you know that you know that it is not really probably right you know a good thing  to do 

because this is under fitting.  Now you can have let us say the other way right could be that 

or maybe write on this  itself I will draw.  So the other way could be that could be that I go 

like that and then I fit something like  that right and this could be right so this maybe I will 

write this as y hat is equal  to w 2 x square plus w 1 x plus b right.  So we are just looking at 

a scalar case imagine all this is happening in some high dimensional  space right in reality.  

So now this is like you know a second order sort of right a polynomial fit and you know  it 

seems to fit well. 

 

  Now this would what we will call is let us say appropriate fitting okay in a sense that  right 

this we feel is probably more acceptable than the earlier one.  Again we do not know what g 

of x is right but then we feel that right this probably  is a kind of a better way to 

approximate the underlying you know function.  Then a third could be what is called what is 

called you see over fitting right.  So an over fitting would right would look like this for 

example, right I do this and  then I do this okay that is an over fitting in the sense that right 

you have something  like y hat I hope you are able to read this it is let us say b plus a very 

high right  high degree sort of polynomial right i equal to 1 to 9 w i x to the power i okay.  

Now you just force yourself to fit as closely as possible right. 

 

  Now the problem is right this is called actually over fitting and you know this is a problem  



that you will keep on encountering okay whenever you do whenever you train a network 

one of  these things right will happen.  And the ideal thing is to be able to get somewhere 

right where even if you make some errors with  respect to the training example that is still 

okay right nobody is saying that you have  to exactly match those values.  The idea is that if I 

give you examples outside of it right you should be able to kind of  write tell me something 

about what those values can be.  See for example, right I mean you know see suppose I ask 

suppose I ask right what might  be the value there okay for y okay.  Now right in this case in 

the case of appropriate fitting right I have this whereas in the case  of this you know 

whatever right this over fitting case it looks like it is actually  0 or something whereas in 

case of the line right I get there. 

 

  So, the idea is that see you train a network so that it can work on examples outside what  it 

has seen right that is the whole idea that is called a generalizability right.  You should 

generalize outside the set because what is the point if I have to show right  everything if I 

have to show everything then why do I even need a network.  So, idea is that you should be 

able to show enough number of samples which are rich enough  right that is why this 

richness comes.  So, if you just show some lame examples and then hope that you know if 

you give a new  example and try to learn something fantastic it would not happen.  So, lot 

depends upon what kind of examples you know expose it to and those examples should  be 

such that they actually tend to they actually help this network figure out as to what 

probably  is going on right. 

 

  And therefore, when examples come from outside of that training set it should be able to  

generalize well it should be able to predict values that are reasonable okay.  Therefore, over 

fitting is bad under fitting is also bad.  So, what really you are looking for is that appropriate 

fitting and here even though I  have shown that you know it goes through all the points it 

does not have to okay.  You do not have to meet that you do not have you do not need a 

training error that is absolutely  0 or anything you are okay with that you can make a little 

amount of error there is a small  margin of error that you can tolerate.  So, that so that you 

can probably accommodate examples coming from outside the training  set you can 

accommodate them accommodate in the sense that you can you can actually predict  

reasonable values for them. 

 

  I mean there is this nice result okay sort of you know what is called what is called  an 

Occam's razor.  Let me write that I mean you know I am not going to talk about it much, but 

I like this  you know because what it says is this Occam's razor.  So, it is a kind of you know a 

principle that says that among let us say competing hypothesis  that that explain known 

observations equally well one should choose the simplest one.  I mean it is a very it is a very 

very elegant statement right.  So, it says that right among competing hypothesis that explain 

known observations equally well  choose the one right which is the simplest. 

 

  And you know this also goes back to some of those some of the relations right in math  if 

you look at the Euler relation and all.  The ones that are the simplest are the ones that 



actually happen to be the most elegant  also right most of the time.  Right you may you read 

a paper if somebody writes a very very convoluted paper right  and then solves a problem at 

the end of the day right you still feel that you feel a little  hollow right you do not really get 

it.  Whereas you know let us say this one a Kalman filter for example, if you read the Kalman  

filter you know so nice.  And then after all it is a I mean the structure is simple, but then the 

problem that that  that was solved was big right. 

 

  So, the elegance rise in its lies in the right simplicity.  Therefore it is all it is never a good 

idea to kind of put a network you know with hundreds  of layers you know you know when 

somehow do my task and all know right.  The idea should be to have the bare minimum that 

you need in order to solve a problem  right.  Now here is where comes this notion of notion 

of a cost surface ok.  Now the the point is right. 

 

  So, you have something like a cost landscape right whenever you talk about a loss see what  

what what are you trying to do.  So, when you talk about a loss function right this is what 

you have at the end of the day  right all that you have is this loss function right.  You want to 

you want to be able to able to approximate something it could be a regression  task it could 

be a classification task at the right end of the day.  Now this loss function itself right nobody 

knows what kind of a landscape it has right.  Because I mean if you look at that m 

dimensional some high dimensional space it has some kind  of a landscape. 

 

  And what you are trying to do is right you are trying to try to try to minimize this  loss 

function with respect to let us say ok.  Now with respect to w and b right let me not write 

theta let us say w the weights and then  b which is the bias right.  There could be whatever it 

millions of these weights and then you know whatever it millions  of these biases, but let us 

say right together if you if you call them as let us say theta  then theta is that is that kind of 

space right where you are kind of say traversing.  And what you have see ideally right I 

mean if you if you if you had your wish right you  would have you would have like to have a 

cost function like that right.  But that is actually never the case first of all right I mean first of 

first thing is  that because of the nonlinearities that are all sitting there right after all this is  

the deep network with lots of nonlinearities you know in the you know in the in the layers  

right hidden layers. 

 

  And therefore, definitely one does not expect this cost function to be as simple as that  

right you do not expect to be except it to be a convex surface.  Now, but then the interesting 

thing is it is not true that right it is non convex because  you have a nonlinearity it is it is non 

convex right inherently.  Even if I make all the activations linear let us say right I do not 

even have this you  know the step activation and all everything is simply linear right.  Even 

then you can show that a network right even if you force everything to be linear  even then 

it does not convex.  And that comes because of something called a weight symmetry you 

know what is called  a weight symmetry feature. 

 

  What that really means is that I mean right this I leave it to you I want you to kind  of right 



think about this.  So, suppose I have let us say 1, 2, 3 and then and then I have let us say 1, 2 

which  is which is my say this is a hidden layer.  I will show for I will just I will just you know 

illustrate for one neuron the same applies  I mean if you have multiple neurons at the 

output.  See for example, right so you know that you know that right you have these weights 

right  coming from this to this to this and then similarly you have these weights right.  Now 

and similarly from let us say here to here. 

 

  Now if you swap the neurons and the weights right what this means is by which I mean the  

let us say let me just indicate this as 1, 2 and then 3 and this is your x 1 what is  it x 2, x 3 

right.  Now if you swap the weights in the neurons that means right 2 goes to 1, 1 comes to 2  

right that means you swap like this right and here of course, it is just 3 if you had  more you 

would swap those also and then if you swap the weights ok that means right I  mean you 

know what is kind of rate going from here to here will then go from here to here.  So for 

example, right I mean see when 2 comes here then you see this weight is what we call  this 

as w 2, 1 right.  See when you have this x 1 to 2 node connecting to 2 we call this as w 2, 1 

right.  So, when 2 goes up there then this weight is what this w 1, 1 right then that weight  

will then be at w 2, 1 when you swap right. 

 

  So, when you swap the weights and when you swap the neurons and similarly right here  

this would have been w 3, 1 ok.  So, instead of you have to swap the weights now.  So, up will 

come w 3, 2 down will come w 3, 1.  So, if you swap right if you swap the weights and the I 

mean neuron that means the bias  will also get swapped ok everything will get swapped.  

When you swap it right you get the same output ok which actually means that, but then if  

you look at the look at look at in that space right what new set of weights you are looking  at 

that is not the same as what you had what you had right originally. 

 

  So, if you look at each arm right what you had was let us say some weight it going now  that 

weight is changing.  So, it is like saying that right in a surface so, if you can think of this 

surface right  I mean we nobody knows how that surface looks like, but then right you can 

think of it as  something like that ok.  Where this is the same I mean you have one weight 

configuration for which you hit the  same minima you have another weight configuration for 

which again you hit the same loss you  can have you can have right as many as many 

numbers I mean permutations right which you  can do.  And this is not the only symmetry 

that you have there are other symmetries also and I  am saying right this is even if you have 

everything linear you do not have to bring in nonlinearities  at all ok.  So, that way a deep 

network the moment you talk about a deep network non-convexity is  simply right inherent 

ok. 

 

  There is a it is not because you have nonlinearities and therefore, of course, throwing in 

those  nonlinearities right makes it makes it more complex right.  But inherently it can be 

shown that you know deep network you know will have there are  other ways you know in 

which you can have you know these kind of you know this kind  of non-convexity right.  And 

therefore, therefore, right what happens is, but then at the end of the day end of  the day 



right we do not care about it because any of these is for us right we do not care  because the 

loss is the same right.  So, I do not I do not have this one a preference for this weights right 

over the over these  or over this I do not because as far as the loss is concerned right it is the 

same right.  And therefore, right looking for a global minimum and all is simply out ok. 

 

  So, maybe in your other courses right you might have looked at nice convex functions  and 

then we talk about a global minimum and all right nothing here ok.  We are all happy as long 

as and then the the the red beauty is that you know there is so  much you know so much 

what do you call you know so much room to go around and be able  to still get things such 

that they are acceptable right that is what that is what may that is  what lends strength to 

these to these right you know deep networks ok.  I will stop here. 


