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  So, the sort of a traditional algorithm right, which is for segmentation, one of the last ones 

that I wanted to talk about is this mean shift method. And unlike the k-means and the  GMM 

right, where we had certain sort of these constraints, the sense that GMM right, we  said that 

it could probably model is a elliptical clusters.  k-means of course, you know has this 

constraint that it has to be circular and so on. Whereas  if you notice here, this is a very sort 

of and it is elegant way of doing and a reasonably  robust method, then you can see that it has 

been able to do the segmentation of this landscape.  And you know, you are able to see that 

right, I mean all these things right that have been  segmented as one segment, these colors 

and then the water as one color and so on. And  right and you know, you do not see any 

particular shape kind of thing here right. 

 

 So, this whole  segmented has actually come out as one segment and so on.  Therefore, this 

is actually a versatile technique okay for you know for doing segmentation.  And what it does 

is right, so in a way I mean I will kind of I will work through the math  a little later, but just 

want you to understand right what is it. So, mean shift right, so  which basically means that 

you know it is trying to shift the mean every time, it is  a kind of right iterative process. 

 

  And it is like a gradient ascent algorithm and we will see right why it is so and the  way it 

works is that right it actually you know it seeks modes or the maxima right in  a sense or the 

local maxima of a PDF in the feature space. So, in a sense right what it  is kind of looking at is 

for example, here is a feature space, it is the LUV which is  a color space.  So, if you had this 

image on the left and if you tried plotting the values of the LUV  right where those points are, 

so you can see that you know there is clearly a cluster here,  there is clearly probably a cluster 

here, there is a cluster there, there is a cluster  there when you are going to visually look at it 

right. You can see that you know there  are these groups that are actually existing there and 

the way this mean shift algorithm  works is by actually modeling each one of these as actually 

a PDF whose mode is what  you seek.  Because right it is like saying that it is like saying that 

right no you have a group  and there is actually you know a concentration. 

 

 So, where there is a maximum sort of a concentration  that is your maxima that is a PDF 

maxima and around at local concentration you have a group.  And similarly you go here there 

is a local concentration around which there is a group  similarly right so on and so forth right.  

So, you can so the way so the way right you can think about it is it does some kind of  a search. 

So, for example, you could start from any arbitrary point okay and it is called  the kind of a 

basin of attraction. So, what that means is right if you start from here  and then here is a 



search window and let us say that you started somewhere and then there  is a vector right 

that is actually pointing out which way you should go in order to achieve  a higher this one 

concentration okay that is the idea of this local maxima. 

 

  So, to say that right you are going to achieve a higher concentration what this means is  that 

you are initially in blue and now it is indicating that right where you need to  be heading to is 

this is this yellow dot right. So, as time progresses with the next iteration  right it is so the 

blue has shifted to where the yellow was. Now the yellow is shifted  further right indicating 

that there is a concentration the basin has a higher concentration in that  region and then it 

goes there right.  And then from there if you see also notice the step size keeps on shrinking 

right because  as you keep approaching the mode the step size will shrink and then right 

eventually  eventually it will go and sit there and then then right and then it will not move 

from  there. So, the way to get a think about it is if you have a cluster and if you pick up  any 

point right and if you try to if you try to say traverse. 

 

 So, this could be your mean  shift path right your means could be shifting from there to there 

to there to there, but  then they will all come to the same mode.  So, all those points that belong 

to one cluster right will all kind of come together and come  seeking the basin sort of the 

maximum of the basin. So, for example, here could be here  could be another sort of a cluster 

right which comes and seeks it through. And so in a way  right so in a way what you can think 

about is a kind of you know PDF right you can think  of you know a terrain right. So, which so 

where you can think of a PDF that is actually  generating those samples right. 

 

 So, if you think of a PDF here then you can think of  that PDF is being responsible for those 

samples there and similarly you can think of a PDF  here that is being responsible for those 

samples there and so on right.  And that is the idea now how this mathematically pans out 

right is what we will see next ok.  So, how this pans out is as follows. So, the way it works is 

like this see for example,  right I mean if you had a PDF like that right suppose let us say 

suppose I gave you know  a distribution and like I said right I mean you could have this and 

then you have one  peak here one peak there and maybe another peak there and so on.  So, if 

you wanted to model a PDF and if you had actually a discrete values right where  you know 

that for example, when you take an image and then you plot right LUV values right  I mean 

you have certain values that appear right and then you will typically write what  will you do 

when the simplest way to do it is if it is a continuous PDF let us talk about  a continuous PDF 

right that is what we are interested in then it will be like you know  summation we shared m 

number of points right within that within that sort of a group then  you will have like i equal 

to 1 to m and then you will typically delta of you know x -  xi where this is this is a Dirac delta. 

 

  What this means is that if you have to write I mean you know write integrate you see f  of x 

of course you know it will integrate to 1 and at the same time if you wanted to  seek what is 

the value of value right I mean you know so what kind of area f of x has at  a particular location 

and then you can think of it as the area under that kind of delta.  Now the question is this is 

not good right this is not actually a good approximate this  is not a good way to arrive this is 



still f hat of x okay not really this is still an  approximation right.  So, we are trying to arrive 

at an approximation what you really need to see for example right  what this is almost saying 

is that you know if I had a neighboring point right and suppose  I did not have values for that 

it is almost seems to think that right they would not occur  at all okay.  Now the idea is that 

typically right a continuous sort of a PDF will have a notion of smoothness  around it right I 

mean if you are seeing a point that is occurring very likely that whatever  is next to it will also 

occur with some finite probability very likely that right something  else will also occur 

according to a finite probability.  Now that is what is actually what a Parzen window does 

right a Parzen window technique  what it does is it tries to model f of x by actually putting a 

bump on top of each of  these values right that you have it puts a bump on top of them and 

this bump should be  such that it should be a smooth bump. 

 

  So that I mean right think of it as a kind of you know a convolution operation right  I mean 

you have values at some places and you want values in between and what you can  think of 

doing is doing is putting a bump out there and everywhere right and then when  all these 

come together and then if you want to know what is the value at some point it  will be just the 

sort of you know a superposition of all those bumps right that actually contribute  to that 

point.  So think of the Parzen window like that and in that sense right so what we do is you 

know  instead of modeling f of x which is actually a continuous sort of a distribution so density  

function in this case so i is equal to 1 to m and then we have a kernel k and then x -  xi and 

then we have a semicolon h this is called a kernel and right this kernel typically  needs to 

satisfy some simple things in the sense that k of x should be always greater  than or equal to 

0 and then integral k x dx right should be equal to 1 and so on in order  for this to remain a 

pdf some simple things it should satisfy.  But people have found that there is a certain choice 

of kernel some 4 or 5 right that are  actually most ideal in order to use them here one of them 

of course is actually you know  this one a Gaussian and there are a few others.  Now to kind 

of think of this h is actually a parameter that controls the actually window  size right I mean 

you know how much of a search area right so for example when you are sitting  at a location 

how much far how far should be looking around you right and that is sort  of a hyper 

parameter and right this is one way so I mean you must have seen other expansions  for say 

f of x right and this is one or so this is called the Parzen technique.  It is called the Parzen 

window technique and in a way you can also think about it like  I said right you can think of 

it as a kind of rate a convolution operation where if you  want if you add samples elsewhere 

and then you wanted to have the value of samples in  between then you can sort of figure out 

right what would be a superposition of the contributions. 

 

  Now mean shift rate basically the mean shift algorithm is actually a non sort of parametric  

approach see if you looked at the look at the GMM it was actually a parametric approach  right 

we said that it we modeled as a sum of Gaussians and so on weighted Gaussians  right. Now 

this is completely non non decent parametric just because a kernel is actually  parametric 

okay it does not mean that f of x becomes parametric okay.  So you could have for example k 

as really a Gaussian kernel and that by itself does  not make it really a parametric approach 

so f of x is a non parametric approach and the  I mean good thing about this is right it is kind 



of it is actually it can do a generic  clustering unlike your you see GMM and all right I mean 

you know which kind of look for  right elliptical sort of you know clusters and so on.  So 

generic in the sense that any shape is fine and it is kind of mode seeking it is  a mode seeking 

algorithm right and mode seeking and mainly right looks at looks at your looks  at your 

feature space right as something made up of individual f of x where a local mode  right will 

tell you will tell you what is a kind of a cluster there. So it is mode seeking  and you can actually 

show that it is a kind of a gradient ascent algorithm I will I will  we will see that and then it is 

not really you know a generative model in that sense  okay. 

 

  It is not really a generative model to be a generative and the other thing is that right  it can 

actually get to the mode without I mean right in a sense that right I mean the  idea is that you 

want to seek the mode right that is the most important thing. When I say  that it is not really 

a generative model in the sense that we are not looking at generating  samples okay unlike a 

GMM where probably you could have a very nice model which you can  probably extend later 

in order to even use it as a kind of you know a generative model  whereas here right we do 

not really we are not looking at really doing a computation  of say f of x. The idea is to idea is 

to go and hit the modes of modes of modes of f of  x and therefore right that is why we do not 

call it a generative model we call it more  in terms of a mode seeking mode seeking approach 

where we are happy I mean right if you can  kind of you know arrive at the mode okay.  And 

go ahead f of x is a PDF x is actually continuous are your samples are for example  in the 

feature space right for example xi could be a RGB color so you have like you  know one color 

one color one color I mean what I have shown here is all those colors  it could be in some 

space right it could be in RGB it could be in LUV so in that space  right you plot all these points 

and then one way to get a look at look at model this PDF  is to simply say that f of x is simply 

a summation of all these impulses but that is not correct  right because x being a continuous 

quantity it is right it is not true that you know if  it is occurring somewhere here then it would 

not occur elsewhere so that is the reason.  Answer is 0 which is not correct right because that 

is the reason why you go for this kind  of a local smoothing okay and smoothing in the sense 

that right the idea is that is that  right you want to be able to able to sort of this is called a 

parson technique the idea  is that you choose a kernel such that right when you actually think 

of it as a bump right  which you can put on top of every peak that you have you have these xi 

values right think  of a bump sitting on top of it and this bump will sort of die off think of 

another bump  that is maybe sitting somewhere else that has its own bump and then all these 

bumps  come together right and there is a superposition going on and if I want f of x anywhere 

in  between I will just integrate I will just do a superposition and it will just kind of  add all 

the contributions coming from anywhere it is like a convolution because the bump  actually 

does not change the bump is the same so it is actually a convolution it is not  it is more than a 

superposition it is actually a convolution and wherever you want right  you can just add up 

those contributions. 

 

  So the way to kind of show it right is this so in general right so what we kind of do  is that 

right in order to kind of pick this k right so this kernel there are various choices  for the kernel 

one particular choice right of this kernel which kind of we will look  at is something like k of 



x or k of u is equal to e raise to - half u this is one such  one such one such choice of a kernel 

you can also have a polynomial kernel and so on.  But this is what so for example if you think 

of k of norm of x - xi I mean if you take  the vector case by h square right that in a sense will 

be like e to power - half  norm x - xi square by h square right so this in a sense is really a 

Gaussian right.  So right I mean so what to so okay now this is u actually greater than or equal 

to 0 okay  so what this means is that one choice of u right which you can have is really this 

right  which would then yield a Gaussian.  Now what you can do is you can actually write your 

write your f hat of x or f of x right  but I am writing f of x which really actually f hat okay this 

is still an approximation  of x this is not exact okay so f of x right you can think of this as let 

us say some constant  okay times let us say k of norm of x - xi square by h square okay this is 

your kernel  and this is some i is equal to i going from 1 to m so this constant right we will 

also  observe other things into this c okay or right now you can even keep it as 1 by m if you  

wish and then right we can actually put in throw in other things okay.  Now when we say that 

it is actually mode seeking okay then it means that if I were to compute  a gradient of gradient 

of f of x right with respect to x right so I would like to see  what happens there okay right that 

is the part that will actually give us give us an  idea into why this is called actually a mean shift 

right. 

 

  So what you can then do is you can write this as 1 by m summation i equal to 1 to m and  

then you can write this as k ‘ norm x - xi square by h square into let us say x -  xi this is a vector 

okay all these are vectors this is also a vector right.  Now I mean if you take a specific case 

right you can solve this but you do not even need  that then what you can do is suppose we 

say suppose we indicate k ‘ of sorry g of x  g of x is equal to just to this is simplify things k ‘ of 

x right.  Suppose we just replace this by something that is more easy to that is just some 

function  g of x then 1 by m is summation so this becomes 1 by m then you have g of norm of 

x -  xi square by h square into x - xi right and this you can now split okay so this you  can write 

as 1 by m where yeah yeah we are correct yeah right I mean this is going to  be 2 okay.  So 

then we will just simply write make this into some c okay just make it in some constant  that 

will absorb everything and then what you have is okay so let us just split this  as c into 

summation g of norm of x - xi square this by h square okay and into x -  summation xi g of 

norm of x - xi square by h square right.  So these are summed over i okay and then what we 

can do is we can actually divide and multiply  by so we will say that is c into g of norm of x - 

xi square by h square right and  then we will also have this term this guy right out here which 

is like summation x to  g of norm of x - xi square by h square okay. 

 

  Now this x right I can actually take it out right because this x is not dependent on i  and 

actually take that out whereas here I cannot take it out right this guy remains  as xi g norm of 

x - xi the square by h square the whole thing I will divide by g  of sorry this summation okay 

summation over i summation over i g of norm of x - xi  square by h square okay.  So if you so 

yeah so this summation is also over i so if you actually right think about  it this right then 

think about this then what will happen is on the left right you still  have gradient of f of x and 

on the right you have like c into summation over i g of norm  of x - xi square by h square okay 

this is one term and then into now if you see here  right this and this will actually knock each 



other off right and therefore you will get  okay this multiplied by x so the first term will 

become x the second term will become  - summation xi g of norm of x - xi square by h square 

by summation i g norm of  x - xi square by h square okay right that is what it will be.  Now this 

for most for so the kind of the kernels that we choose right this is actually a positive  quantity 

okay this is k ‘ of x and the way we choose a kernel is that this is a positive  quantity and what 

happens is right this term here right this is actually called the mean  shift why do we call this 

the mean shift is because it is because right I mean if you  kind of think about it right you are 

sort of looking you are sitting at some location  x right so the way to kind of think about it is 

you are sitting at some location x and  then you have a weighted mean of mean of all the points 

within that window which is coming  from the right and this shift right and this mean shift is 

saying that if you were at x  old right then you should be moving on to an x new which is like 

x old plus the mean  shift right that is what in that is a graphical thing about showing right 

how you move.  So the way you move is that you could you are at x right now and what it is 

saying is  that you have to move from there and you have to move by an amount which is like 

the old  x plus the mean shift amount okay that is why it is called the mean shift because you  

have a weighted mean on the right right right is a weighted mean right this is a weighted  

mean quantity and it is saying that right you need to get a shift right in order to  be able to in 

order to achieve a maximum for this guy a gradient of say f of x and if you  think about it right 

you can actually think about it as grade m and I can actually bring  the quantity on the right 

on to the left and I can write this as gradient f of x by c into  summation i okay g of norm of x 

- xi the square by h square and then I have write x  - this right summation blah blah okay this 

is my actually mean shift quantity right.  What do you see here? See when you write okay see 

one way is that right I mean there is  actually a convergence proof at which I am not showing 

here there is a there is a convergence  proof right which shows that as you keep doing this 

iteratively right so for example so the  way this works is that you have like x new which is like 

x old plus a mean shift okay. 

 

  Now if you think about this mean shift quantity and now did you see something here this is  

the mean shift what do you see here? See I am writing x new as x old plus the mean shift  right 

that is how I am trying to show that this is an ascent algorithm this is actually  a gradient 

ascent with something special going on I am hoping that somebody will tell that  what is going 

on? No it is like you started with started somewhere and you want to go  somewhere right 

you want to go such that you reach the maximum of this f of x where you  are seeking the 

mode of f of x right so think of a group of points that you have you have  got right different 

groups of points right and when you have a group that basically means  that there is a density 

of points there right which means that you are trying to seek the  mode because around the 

mode is where all these things are grouped right that is the  way you see it so which means 

that all these points belong to that group.  So you are starting from somewhere right let me 

take a point from this group and I take  a window and I am moving right so this window is 

this mean right this x i g this is over  m number of samples right so that m number of samples 

is being computed over a window  and I started from some x old and now it is saying that 

move such that x new becomes x  old plus the mean shift the mean shift is the old x so x is like 

x old - the -  is the weighted mean think of this x as x old in this quantity okay.  Now what I 



am saying is so and then you move forward okay now what will happen is initially  your step 

size okay that is what I did not want to use that word but let me use it now  but something 

more than that yeah you are right think of that as a step size but something  more is happening 

it is actually it is an adaptive step size it is an adaptive step  size it automatically decreases 

this the quantity on the right right will keep on falling there  is actually a you know a 

convergence proof that shows that the right the mean shift will  actually you know go to 0 

eventually right as you keep on iterating the mean shift will  eventually become 0 that actually 

means that the point at where you wanted to come to the  mode you have reached there and 

you just stay there after that you do not get any forward  movement.  So the way to think 

about it is if you think about this mean shift here right that is like  you can think of this 1 by c 

this whole thing as your alpha the step size for the gradient  right replaces here you know 

with x old plus some alpha times a gradient of you see f of  x that is how you would do right 

okay so you move by actually the mean shift amount but  then moving by the mean shift 

amount is not something that you are just doing like that  it is actually a gradient ascent okay 

it is actually a gradient ascent which takes you  from anywhere that you are any point that 

you take from that cluster if you move it  will actually take you to the local mode there and 

this f hat of x that you are modeling  is that local cluster right you are not trying to model that 

is why I said that is not a  generative model this is like locally modeling each cluster you will 

have a mode for one  cluster you have another f for another cluster another f for another 

cluster it is not like  you are modeling an entire set of data sample right like you did in g m m 

g m m it was like  you know you had a complete sort of a distribution right f of x like you know 

summation of all  the Gaussian that is not the way it is done here this is like local mode seeking 

you think  of this as 1 bump think of that as another bump think of another and then right 

each  one you have to seek a mode and I mean the way to think about it is you have a 

distribution  sitting there from where those samples are coming right one distribution there 

from where  these samples are coming another sort of a distribution there from there from 

where those  samples are coming another sort of a distribution here from where those 

samples are coming and  you try to seek the mode of each one of these. Because once you 

have the mode okay then then  you know that all these points belong to the and they are the 

nice thing is wherever you  start right if these points belong to the cluster they will all come 

there it is like  a basin of attraction they will all come head to that mode and then from another 

cluster  they will all come and head to that mode that was that I mean. 

 

  So well some people show simulations and all I do not have an actual simulation, but that  

slide right it is kind of sort of showed you right what it means.  M is the total number.  M is 

the number of samples within the window, number of samples within the window of choice.  

Now that is the only hyper parameter here, how much you should see around you, how many  

samples should be here because I mean you cannot take a window that is too big right  then 

it would not make sense because then you will encompass multiple clusters.  So that is still a 

hyper parameter okay so that you have to choose carefully, but as  long as you do that right 

everything else sort of moves very nicely and there is no  sort of a restriction that a cluster 

should be this shape, that shape it can be anything. 

 



  Okay so what I would so this alpha is actually an adaptive step size, this is an adaptive  step 

size and there is a theoretical convergence proof theoretical convergence proof that m  s that 

the mean shift will go to 0.  Yeah no no h is a hyper parameter so the window function is a 

function window is a function  of h, h sort of tells you so h is like you know telling the influence 

right how much  will you so this norm x - x y square if you do not have h right then it will sort  

of it will treat every x i in a certain way if you now increase h right then if you increasing  h 

will mean what?  Then it will mean that if something is what does it mean?  So if something is 

close right then it will have to be really close otherwise if h is  smaller then it will become e 

power - right, no it is just the it is opposite yeah  so whatever so that way you can control 

right about what you what I mean how you want to  treat an x i that is near to x how much 

weight you want to give that will that will be that  will be as a dictated by h right.  So it means 

that if you have your h large right then it will mean that even something  farther off will be 

not equally but then yeah I mean that will also be taken into consideration  whereas or else 

you know it will just knock it off very fast right it will be like a very  local window versus a 

spread out window.  So window is directly a function of h and depending upon the choice of 

the kernel you  know how you the window size will take shape.  So theoretical convex proof 

that m will go to 0 as the as you write iterations progress  and this is a gradient ascent this is 

a variant of actually a gradient ascent algorithm I  call it a variant because the step size is 

adaptive variant of gradient or not gradient  descent gradient ascent okay. 

 

  Yeah so right I mean so I showed you some examples over it just to just to very quickly  

quickly go back and show those examples.  So here is how it is right so you model so you have 

an image like this then you plot  the plot the feature space and you can think of think of all 

those modes right which are  actually seeking locally in order to be able to you know get your 

cluster and and right  this is how it will come.  So you take a point right and then if you follow 

the mean path right the mean shift  path it will it will eventually end up in the mode here 

anywhere you come from the only  thing is right you will have to do it for every point I mean 

that is what makes it computationally  but there are kind of ways to ways to not do it in a 

brute force manner but really if  you think about it every point you are sort of trying to see 

where it goes and then right  after that right if you do if you take this image right I mean you 

can see that any shape  is okay you can you can cluster very well these mountains right.  You 

can see that you know these shapes you are not modeling them as elliptical or anything  right 

any shape is okay.  So that is the strength of mean shift which is why which is why I thought 

right I show  you which is why I did not want to miss it right you know miss sort of explaining 

what  it is and and especially right the kind of gradient ascent part right it is nice to to  kind 

of know how it works alright. 

 

  So I think with that right we are actually done with done with all the kind of classical  not all 

right the most the most most relevant ones I do not know what I did the most relevant  ones 

and a deep networks right for both optical flow okay which we have already done as well  as 

the segmentation problem right.  So I am just I am just going to kind of right orally tell okay 

what those points are okay  to the to the extent possible okay unless something really needs 

to be written okay. 


