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A MATLAB Session 

Introduction 

Okay, so now that we have done this, I am going to switch tracks a little bit and we are going to 

look at something in MATLAB, just so that you get a feel for visualizing these entities. I am 

going to take a function which is beautiful to visualize. Let us just note that down: a function of 

two variables. For the simple reason that we can visualize a three-dimensional plot, the function 

is 𝑒−(𝑥−1)
2
sin(𝜋𝑦). Does this function look periodic to you? It is periodic in which direction? It 

is periodic in 𝑦, right? Along the 𝑦-axis, we find it repeating. In the 𝑥-direction, it is not periodic, 

as it is a decaying exponential. 

 

What would you say is the period of this function in the 𝑦-direction? It is 2 units. So, let us 

restrict ourselves to a region of space where the function is easier to visualize. 

MATLAB Implementation 

The first expression declares 𝑥 and 𝑦 to be symbolic variables. It means that when you encounter 

𝑥 and 𝑦 in any expression, they are symbols. Once you run this, you will see that 𝑥 and 𝑦 are 

declared as symbols in the workspace. 



 

Next, I define the function 𝑓𝑠 as a function of 𝑥 and 𝑦, with a 1 − in front for convenience: 

𝑓𝑠(𝑥, 𝑦) = 𝑒−(𝑥−1)
2
sin(𝜋𝑦) 

Let us evaluate this. Now 𝑓𝑠 is in the workspace, and I will use the ‘fsurf‘ plot to visualize it. 

The plot takes two arguments: the function and the range for 𝑥 and 𝑦. 

Range in 𝑦: 0 to 1, Range in 𝑥: 0 to 2 

You can see a local minimum that looks like a cup. If I had plotted this for a larger range of 𝑦-

values (e.g., −50 to 50), we would have many identical minima. Depending on the initial point, 

you would fall into one of those minima. 

Visualizing Gradients 

Next, I want to visualize the gradients. After generating a mesh grid in 𝑥 and 𝑦, I use the 

‘gradient‘ function to calculate the gradient of 𝑓𝑠. The first entry of the gradient is 
∂𝑓

∂𝑥
, and the 

second entry is 
∂𝑓

∂𝑦
. This symbolic differentiation is powerful because it avoids mistakes in 

manual calculation.  

 

We can then use the ‘subs‘ function to substitute values into the gradient and assign the results to 

variables 𝑓𝑥 and 𝑓𝑦. 

Now, let us plot the contour of the function using ‘fcontour‘, which shows lines of equal function 

value. On top of this, the ‘quiver‘ plot overlays arrows representing the gradient vectors at points 



on the grid. The arrows point in the direction of steepest ascent, and their lengths correspond to 

the magnitude of the gradient. 

At the bottom of the bowl, the gradient vectors become smaller, indicating that we are near a 

stationary point. As we move higher up the bowl, the arrows get longer, meaning the rate of 

change increases. 

This demonstrates the concept behind gradient descent: follow the negative of the arrows, and 

you will land at the center of the bowl. 

Hessian Calculation 

 

We can also use the symbolic toolbox to calculate the Hessian matrix, which gives us the 

second-order derivatives of the function. Using the ‘subs‘ command, we substitute values of 𝑥 

and 𝑦 into the Hessian, and then evaluate the numerical values. 

To determine whether the Hessian is positive definite, we calculate its eigenvalues. In this case, 

one of the eigenvalues is negative, meaning the Hessian is not positive definite. This suggests the 

function is not convex everywhere. 



 

Conclusion 

This symbolic toolbox is a very valuable tool for both research and learning. It allows us to 

explore the behavior of functions, gradients, and Hessians easily. You can apply these techniques 

to more complex functions or data-driven models by using symbolic approximations or quadratic 

fits. 


