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Introduction to Line Search 

Let’s begin with the first question: "Given a Hessian, how do we decide in which part of the 

domain it is positive definite?" This question seems to stem from a previous example, where a 

function resembled an upward opening bowl, but at a specific point, the Hessian was not positive 

definite. The short answer is that there’s no easy way to determine the positive definiteness of 

the Hessian across the domain. You would either need to come up with an analytical guarantee 

or numerically check at each point where you’re solving the problem. This difficulty is one 

reason second-order methods are often avoided in high-dimensional problems. 

Now, moving on to a related question: "Is the direction p arbitrary, or is it specifically pk?" 

There’s been some confusion here, and I take partial responsibility for that. To clarify, when we 

are at xk and moving towards xk+1, the direction we choose is called pk. At this point, we have 

many descent directions available, but in Newton’s method, we find the best direction by 

minimizing a specific optimization problem. The pk is the result of that minimization. Initially, 

it’s just p, and after solving the problem, the best direction is referred to as pk.  

 

Another question that came up was: "Why do we assume the Hessian is symmetric?" This 

assumption arises because of a theorem that ensures the symmetry of mixed partial derivatives, 

assuming these derivatives are continuous. So, yes, we do need to check that this condition 

holds. 



There was also a question about the requirement for an open neighborhood around xk when 

performing gradient descent. The idea behind an open neighborhood is to ensure that there are 

non-zero points around xk where gradient descent can actually occur. 

 

Next, we discuss the Newton direction. The expression for pn is 

pn = −H−1∇f 

where H is the Hessian and ∇f is the gradient of the function. As long as the Hessian is invertible, 

the Newton direction is unique. If the Hessian is not invertible, the expression becomes 

undefined. 



 

Now, moving on to the line search method. The basic idea of line search is to move from xk to 

xk+1 by walking some distance in the direction pk. The step length α is what needs to be 

determined. People in machine learning might call this the "learning rate." The goal is to find an 

α such that f(xk+1) < f(xk), assuming we’re moving in a descent direction. 

When we look at the function ϕ(α), which is a scalar function of α, the goal is to find the α that 

minimizes this function. We want to find the α such that the gradient of ϕ(α) is zero, indicating 

a stationary point.  



 

 

Graphically, this might look like a curve with several points where the gradient vanishes, but in 

practice, computing ϕ(α) and its derivative can be expensive, especially in real-life problems 

like antenna design, where each evaluation might take hours. Therefore, finding the exact value 

of α is often impractical, leading to the need for inexact line search methods. 

 



Lastly, the "Wolfe conditions" provide a set of rules to guide the selection of α. These conditions 

help ensure that the step length is not too large or too small, allowing for a more efficient search 

for the optimal α. Although the conditions are named after Wolfe, they are relatively simple and 

could have been discovered by anyone interested in this problem decades ago. 

In summary, line search methods aim to balance computational efficiency and precision, 

especially in the context of large, complex problems where exact solutions are impractical. 


