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Line Search - Convergence and Rate - 1 

Okay, so this is just sort of the geometry of how a gradient descent algorithm would proceed. 

You would have this exact behavior and orthogonal set. Now, yes, question. Yeah. Correct. This 

proof is not telling us; this proof in fact requires me to take two steps only then I can talk about 

orthogonality, but what we are saying is that there are some special directions where I just reach 

in one shot that is not covered in this only we will, but we will prove that later we will figure out 

when does it happen. Can I say anything about it? No, this is in general what we are saying is 

that if the contours are circular, I will reach in one shot. If the contours are anything but circular, 

I will go in a zigzag way with the property that every subsequent step is at 90∘. 

If it so happens, if all the stars align that the gradient. No, it will actually have to be circular 

because at each point you are, you know, you should not; the function value should not increase 

your algorithm will end there. So, if you have a circular contour on the outside and some funny 

contour inside, then if you are going along that line, it is possible I can construct some kind of a 

landscape where at some point you will begin a ascent. The contours being circular is a sufficient 

condition, but this is—is it necessary? 

In this case yes, and again as I said we will come to it. We will come to it when we do the next 

thing which we are going to do. We have spoken about descent directions; we have spoken about 

Wolfe conditions—what are the conditions that the step length should satisfy—but so to speak 

the elephant in the room; no one has asked the question: is there any guarantee that gradient 

descent converges? Does there exist a solution which is hoping that 𝛼 and praying that a solution 

exists, but people would like to know does a solution exist? Can you prove it to me that this 

algorithm will converge, right? So, this is really important: two questions—convergence and the 

convergence is kind of does it converge yes or no? If it converges that means it exists; the second 

is rate at what rate do I converge. 

So the good news is that yes, there is convergence. In the sense that wherever I start, let us write 

that down, I reach a stationary point. In other words, wherever I start, I will reach the nearest 

local minima. So, this is not a proof that it will reach the global minima. So this is saying that 

wherever, whichever, so to speak, whichever valley I start in, I will reach the bottom of that 

valley. Whether or not that valley is good enough for you is—I mean your call. So, I am going to 

go about the proof of this now. 

So, that we get particularly for this algorithm, I am going to do the proof because this 

algorithm—the steepest descent or the gradient descent algorithm—is used so extensively in AI 

and ML, which is why I think it is important that you know the proof: how does it go through? 

There are like 10,000 variants of this proof depending on the latest algorithm (Adam or this, that, 

and the other), which people use to calculate the step length and all of that. The skeleton of this 

proof is used by all other guys, so we will prove this over here. 



Ok, so let us write down a few things that we will need. One thing is the angle. Remember we 

spoke about when we spoke about whether or not a direction is a descent direction? We spoke 

about the angle between 𝑝𝑘 and the negative gradient; that angle should always be in a cone of 

90∘. So, to quantify that a little bit better, I am going to define this angle, right? So, I am going to 

define 𝜃𝑘; how will I define it? Simply by an inner product. So, what will be for example, 

cos(𝜃𝑘) equal to? 

 

We just use the definition of the inner product. What is the inner product of—if I write, if I say 

𝐴𝑇𝐵—what is it equal to? ∥ 𝐴 ∥∥ 𝐵 ∥ cos. That is the same thing; I am going to use here and 

what are the two characters I am interested in? The descent direction 𝑝𝑘 and the negative 

gradient. So, this is going to be −∇𝑓𝑘
𝑇𝑝𝑘, and since it is cosine, I need to normalize. Obviously, 

𝜃𝑘 = 0 corresponds to what? If I were to choose 𝜃𝑘 = 0, I am picking which 𝑝𝑘? The negative 

gradient. The negative gradient, right. So, this is steepest descent. 

But in general, I can have −90 < 𝜃𝑘 < 90. Ok, and when this is the case, can I say, can I put 

down any inequality for cos(𝜃𝑘)? If the angle is always between −90 and 90, what value does 

cos take? It is always positive, right? So, this is fairly simple trigonometry that we need to keep 

in mind. So, this is just some definition that we will use; we have not started the theorem yet. So, 

let us note this down. 

So, now point B is actually—point B, I am going to state the theorem and then we will sort of get 

some intuition and then try to prove it. It is a difficult spelling also to write this person’s name; I 

do not know which country; probably Dutch. Zoutendijk’s condition is called. Remember we are 

doing line search; it implies we are doing something like this, right? So, what are we assuming? 

We are going to assume that this is a descent direction. This is the first thing that we are 

assuming. 



We need to assume something about 𝛼𝑘. What is the most reasonable thing that you would say 𝛼 

should satisfy? Based on what you know so far, supposing you were in charge of this algorithm, 

you would not be ok with some random 𝛼, right? You would want 𝛼 to satisfy something; what 

is that something? That is exact line search; that is too strict. Something lesser than that we have 

studied it. Wolfe conditions, right? Wolfe conditions is sufficient decrease and the curvature 

condition, right? 

 

Satisfies. With these two ingredients in place, I am all set for doing gradient descent. Insisting on 

exact line search may be too strict. So what are the conditions of the theorem? They are all very, 

what should I say, reasonable conditions. The first condition is the function should be bounded 

from below. I call this the idiot check. 

Why should we call this the idiot check? Supposing I say find me the minima of 
1

|𝑥|
, it does not 

exist, right? I mean minus infinity is not a number or whatever, right? So, the function has to be 

bounded from below; only then does it even make sense for you to do optimization, right? So, 

this is very, very much common sense. The next two conditions are basically to ensure I can do 

calculus. So, they are going to be about continuity and differentiability, right? 

So, we will just note that down: 𝑓 is continuously differentiable and the second is that the 

gradient of 𝑓 is Lipschitz continuous. We have all had a review of Lipschitz continuity simply, 

and I am saying that the gradient should be Lipschitz continuous. That means if I take |∇𝑓(𝑥) −
∇𝑓(𝑦)|, what should this be? ≤ 𝐿 ∥ 𝑥 − 𝑦 ∥ for all 𝑥 and 𝑦 in some open neighborhood, ok. So, 

this is what I need; these are the conditions of the theorem, right. Now, if all of these conditions 

are satisfied, now I will write down what is this Zoutendijk condition, right. 

So, this is you can think of this as the if part and then I have the then part. Ok, then looks a little 

grungy, does not look like what you are expecting; it is saying that if these fairly straightforward 



conditions hold true, then this big summation is what? Not blowing up, basically, that is what it 

is saying. It is less than infinity means it is a bounded number. 𝑘 is left to us; that means 𝐾 can 

be as large as I want. So, it is saying that take 𝑘 to be whatever you want as large as you want; 

this summation somehow is always going to be less than infinity means it is a number, it is a 

finite number, right. 

So, from here before we sketch out the proof, can you kind of guess how does this imply that 

gradient descent converges? Just intuitively, because it is better to get an intuition before we go 

into the grungy details. Let us assume that you know the proof and now you have the statement 

in front of you; this summation is less than infinity; what can we say? That means it is the 

summation; I keep adding terms; are each of the terms positive? cos2 is positive; ∥ 𝑓𝑘 ∥
2 is 

positive. I keep adding positive terms, keep adding, keep adding. 

So, the only way that this can happen is if the sequence must have to approach 0. So, if that is 

true, I have that if ∥ ∇𝑓𝑘 ∥
2 must approach 0; that is one term and the other term is this term, 

right? So, both of these terms must approach 0; this must mean that either 𝛼𝑘 approaches 0 or 

∇𝑓𝑘 approaches 0. So, in either case, we will land up concluding that the algorithm converges, 

and you can see this goes back to your original idea of when you are walking down a valley; you 

are either very close to the edge or you are very close to the bottom of the valley, right. So, let us 

sketch out this proof. 

 

So, just to recap: the function has to be bounded from below, the function is continuously 

differentiable, the gradient is Lipschitz continuous, and I am asserting that this must hold true. 

So, now I will just sketch out the proof before I run out of time. So, we will write down from 

what we just spoke about; we will write down 𝑘 arbitrary points and write down the value of the 

function at those points at the minimum of 𝑓(𝑥) at the minimum of 𝑓(𝑥) let us write that 𝑓∗ 
which is a bounded number; we know that this number is finite. 



So, this is just a point. So, for every 𝑘 I can compare this at 𝑘 = 0. So, we are going to write 

down a couple of important inequalities. 𝑓𝑘 − 𝑓∗ is greater than 𝑓𝑘 − 𝑓𝑘+1. What is happening 

here is I am moving in a descent direction, right, so this is a downward step for us. The next 

inequality we can obtain from Wolfe conditions because we insisted on Wolfe conditions; I am 

free to assert that 𝑓𝑘 − 𝑓𝑘+1 is greater than or equal to 𝑐𝛼𝑘 ∥ ∇𝑓𝑘 ∥
2, where 𝑐 is one of the Wolfe 

coefficients we spoke about, right. So, combining these two inequalities, this must hold because 

we are doing descent; as long as we are doing decent direction at all times, this should be true. 

So, 𝑓𝑘 − 𝑓∗ is greater than or equal to 𝑐𝛼𝑘 ∥ ∇𝑓𝑘 ∥
2. So, we have ∥ ∇𝑓𝑘 ∥

2 is less than or equal to 

this quantity. Now note that 𝛼𝑘 is bounded away from zero; otherwise, I cannot use Wolfe 

conditions, right. Hence, ∥ ∇𝑓𝑘 ∥
2 must approach 0. Now I need to say what happens with that 

summation. So, now we go back to the condition. We will analyze this condition. 

We said that if I keep going in this direction for each 𝑘, there is a condition we know; this should 

hold true. Hence, let us see what happens with that quantity. If I take a summation of the squared 

norms up to some 𝐾, this becomes ∑ ∥𝐾
𝑘=0 ∇𝑓𝑘 ∥

2< ∞ because we are bounded in this case. So, 

we have this summation and it is less than infinity. 

If it is less than infinity and we have also proved that ∥ ∇𝑓𝑘 ∥
2 must approach 0. Hence, for large 

𝐾, ∥ ∇𝑓𝑘 ∥
2 must go to zero; 𝐾 can go as large as we want. So, we have 𝐾 → ∞. So, therefore, ∥

∇𝑓𝑘 ∥
2 must approach 0. So, this gives us a valid way of proving that we are converging. Hence, 

we can write down lim𝑘→∞ ∥ ∇𝑓𝑘 ∥
2= 0; so either I am converging to a stationary point or you 

can think of it as a local minima. 

So, before we wrap up, does that kind of all make sense? Is that intuitive? Because you are 

proving something simple. We have a nice theorem on convergence and you can ask the 

converse question. If the converse was true, the convergence was guaranteed, and if it was not 

satisfied, what would happen? If ∑ ∥∞
𝑘=0 ∇𝑓𝑘 ∥

2= ∞, what does it tell you? I am stuck in a loop. 

You may not be able to find a minimum, right? You may be oscillating or you may be going 

away from the solution, right. So, one of the things that we have seen so far, so let us wrap up, 

and I will make sure we summarize the conditions before we dive into the next chapter. 


