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Convergence analysis of a descent algorithm - 2 

All right. So I’m going to use this norm as in the rest of the analysis. Now we should know 

where we are heading. We are heading towards a stationary point. If I’m heading towards a 

stationary point, what is one of the qualities of the stationary point? How will I identify it? 

∇𝑓(𝑥∗) should be 0, right. We have studied this right in the beginning that the signature of a 

stationary point is its gradient is 0, right. 

So let us keep a note, we should always know where we are heading otherwise it just looks like 

random math, right. So add the solution ∇𝑓(𝑥∗) = 0. Do I have an explicit expression for ∇𝑓? 

We do, right? It’s simply 𝑄𝑥 − 𝑏, right? So 𝑄𝑥∗ − 𝑏 = 0. Right? So this is just an aside that we 

will use. 

Now let’s get back to what we’re interested. What is the distance of the iterate from the solution? 

But we are going to use the Q norm instead of the two norm. So what we need to compute is this. 

So, we will just plug in the definition of this norm. I am going to get (𝑥𝑘 − 𝑥∗)𝑇𝑄(𝑥𝑘 − 𝑥∗), ok. 

 

If I open this up, how many terms do I expect? 2, 4, 6, 8, how many terms? 4 terms, right. you 

can let us explicitly open it up. 𝑥𝑘
𝑇𝑄𝑥𝑘 is one term plus 𝑥∗𝑇𝑄𝑥∗ is another term and then I have 

the cross terms. Okay. Let’s keep in mind this expression over here. 



Can I simplify a few of the terms over here? No, I’ve just opened it differently. The first two 

terms are positive, the next two terms are negative, right? So do I see a 𝑄𝑥∗ anywhere in this 

expression? Is there a 𝑄𝑥∗ hanging out somewhere? There’s a 𝑄𝑥∗ hanging out over here. is 

there a transpose of that hanging out somewhere? There is a transpose of that also hanging out 

over here. So this term is going to be 𝑏 and therefore this is 𝑏𝑇. If you take transpose of this 

expression what will you get? You will get 𝑏𝑇 = 𝑥∗𝑇𝑄. 

 

𝑄 is symmetric so 𝑄𝑇 = 𝑄. Anything else that I can pull out? Can I group some things common? 

I’m gonna put a half over here. Can I identify, can I simplify this entire expression of four terms 

in terms of 𝑓? Can you see if you can identify an 𝑓 over here? What was my definition of 𝑓? 
1

2
𝑥𝑇𝑄𝑥 − 𝑏𝑥. Do I, am I seeing those terms anywhere? Do I see a 𝑓(𝑥𝑘) anywhere? What was 

𝑓(𝑥)? Let us write that once again. 
1

2
𝑥𝑇𝑄𝑥 − 𝑏𝑇𝑥. 

Okay, now do I see 𝑓(𝑥𝑘) anywhere? First term matches 𝑏𝑇𝑥𝑘. Is that there anywhere? First and 

which term? Third term. First and third term if I combine this is 𝑓(𝑥𝑘). If I combine term 

number 2 and 4, 𝑥𝑘
𝑇, sorry yeah, So, is have I made a mistake anywhere or it is ok? 𝑥𝑇𝑥𝑘 yeah 

ok. Term 3 and. 

So, this is 𝑏𝑇𝑥𝑘 and ok. So, have we made a mistake in algebra somewhere? 1, 3 and. Correct, 

half is not for the b’s coefficient. Correct, correct, correct. So, let us get this out. 

So, half, okay let us write this down properly. So, I am going to get 
1

2
𝑥𝑘
𝑇𝑄𝑥𝑘 and 𝑏𝑇𝑥𝑘 and this is 

going to give me −𝑏𝑇𝑥𝑘, right. This is what I have got. So, this is and what is left? Plus 
1

2
𝑥∗𝑇𝑄𝑥∗, right. So, what is left? Now, can I make somehow, can I introduce, can I write this in 

terms of 𝑓(𝑥∗)? by some algebra, by some clever trick. 



Is it possible? Yeah. So, this is clearly 𝑓(𝑥𝑘), right. What about this term? Minus 𝑓 of this term 

is −𝑓(𝑥∗), ok. Why is that 𝑥∗, let us see that. 𝑥∗ = 𝑄−1𝑏 Therefore? Okay. 

 

I mean it is correct but does everyone follow what has happened over here? How this became 

−𝑓(𝑥∗)? So let us try to write it out a little bit more explicitly. We have, what is the solution 

over here? 𝑄𝑥∗ = 𝑏. 𝑄𝑥∗ = 𝑏. From here what do we do next? So, 𝑥∗ = 𝑄−1𝑏, then? Substituted 

in the expression of 𝑓. Substituted in the expression of 𝑓, ok. 

What will I get? Do I get? and then I will do the same in the first term ok. So, this is 𝑄−1𝑏, this is 

you want to leave it as it is 𝑏𝑇𝑄−1𝑇 then. So, the 𝑄𝑄−1 goes to identity right, then what does this 

become 
1

2
𝑏𝑇𝑄−1𝑇𝑏 and then and that transpose? 𝑄 is symmetric so I can get rid of this right and 

then I have a 𝑏𝑇𝑄−1𝑏 ok. Then and then this half and half becomes equal to −
1

2
𝑏𝑇𝑄−1𝑏 ok. I am 

still not there yet I want this expression. 

What do I do next? substitute, I can substitute 𝑏 as 𝑄𝑥∗, right. So, now if I substitute 𝑏 = 𝑄𝑥∗, I 
am going to get exactly this expression, right. So, little bit of algebra, right, but we get this 

expression. This is, let us write this as an aside. So what did I, let us summarize it over here, 
1

2
∥

𝑥𝑘 − 𝑥∗ ∥𝑄
2= 𝑓(𝑥𝑘) − 𝑓(𝑥∗), ok. 

Yeah, question. The 𝑏𝑥𝑘, that is here, it had a, there were two of them then they got multiplied 

by half, so the coefficient became 1. The term number 3 and term number 4, these guys. 𝐴𝑇𝐵 is 

equal to, I mean I can swap it, 𝐵𝑇𝐴, that is how I got this. So 3 and 4 combine into this and the 

second term is what needed a little bit of algebra to see it is actually 𝑓(𝑥∗). Anyone having 

trouble in this step? So if you write along as you are watching this, it will make more sense. 



Otherwise, it just looks like a bad movie. So this is what you get. Now, unfortunately, at this 

point, the proof is equal to pulling a rabbit out of the hat. There is a lot of hard work done by 

another scientist. So we are going to write his name over here. 

 

It is Luenberger. who takes it from this point. So I have related the distance between two 

function between the iterate and the convergent point to the difference of function values. So that 

is a great simplification. And Luenberger takes this further and says that this norm over here is 

actually less than equal to 

(
𝜆𝑛 − 𝜆1
𝜆𝑛 + 𝜆1

)
2

∥ 𝑥𝑘 − 𝑥∗ ∥𝑄
2  

this proof is not going to be done in class, but we will take it on faith. So after relating this norm 

of the iterate distance to the function values, this is what you get. 

Now what are, anyone wants to guess what the lambdas are? Eigenvalues of 𝑄. These are the 

𝜆𝑖’s are eigenvalues of 𝑄, ok. There is a similar question that you will also find in the tutorial 

about this, ok. So now this is a very very useful result because if I wanted to look at, if you look 

at the definition of linear convergence what was the expression that you had? What was the ratio 

that we had in when we spoke about linear, linear convergence? The ratio of what to what should 

be less than something, what is it? It was 𝑥𝑘, so let us call it ∥ 𝛥𝑥𝑘+1 ∥ divided by ∥ 𝛥𝑥𝑘 ∥, right. 

𝛥𝑥 is 𝑥𝑘+1 − 𝑥∗. 

Was what? Less than equal to 𝑟, where 𝑟 was 0 to 1. Does it look like that? Does this expression 

that we have got, does it look like that? It does look like that. What is my 𝑟? Square root of this 

expression, right? Because I have got the squares on both sides. So, 



𝑟 = √
𝜆𝑛 − 𝜆1
𝜆𝑛 + 𝜆1

 

Again, just a quick linear algebra refresher. 

 

I have called these the eigenvalues of 𝑄. If I call these the singular values of 𝑄, would I be 

correct or incorrect? Correct, because for a not just a square matrix right, for a positive definite 

matrix, so obviously which is also symmetric, the eigenvalues and the singular values are 

identical right. So, I can talk in either terms ok. So, this proves that convergence, we proved 

earlier that convergence happens and now we are saying that convergence is what? Linear. Now 

this expression over here with the red arrow contains in it actually a lot of intuition, a lot of 

geometric intuition is contained inside it if you pay attention to it. 

So remember when we had drawn the zigzag contour of the steepest descent trajectory, 

remember the zigzag contour, that zigzag contour had happened when I had an elliptical 

elliptical cup so to speak, right? And we had said that the curvature of the cup is related to the 

properties of the Hessian, second order derivatives gives me curvature information. Where is the 

Hessian over here going to, I mean in this quadratic cost function which I have, the Hessian is 

going to be what? 𝑄 is going to be the Hessian. And what have I got over here? The 𝑟 term, does 

it have the properties of the Hessian? It directly has the properties of the Hessian, the 

eigenvalues. Now if I had a square bowl or a square cup in 𝑛 dimensions, what would happen to 

the eigenvalues? They would actually all be the same. No matter which way you approach from, 

the curvature is the same. 

So you would have the same eigenvalues. So that was actually a special case. If I have circular 

contours, right? That means the bowl is actually like a circle in 𝑛, I mean it is a bowl in 𝑛 

dimension circular in cross section. No matter where you start from, you are going straight into 

the solution. So you can see that over here, 𝜆𝑛 = 𝜆1, therefore what? It becomes 0, right? So the 

distance between 𝑥𝑘+1 and 𝑥∗ becomes 0 in one shot and this theorem is telling us that. 

So the curve and on the contrary, if I have a very squished cost, I mean a very squished bowl so 

to speak, right? Like a very very elliptical thing. Then 𝜆1 and 𝜆𝑛 are going to be very different. 

So this 𝑟 term is now going to become larger and larger, right? So that means you may take 

many steps to arrive at it. No matter how many steps you take, the rate at which these steps are 

going to go is linear. 

That is clear from this proof. Okay, yeah that is a good point. So this was proved under some 

very restrictive conditions. The first restrictive condition was I assumed quadratic cost function. I 

assumed convexity, well that is okay. 

I assumed exact line search, right. So the question is will this work in general for inexact line 

search? Will it work for non-quadratic cost function? As you will find out in the research 

literature people have proved that linear convergence happens even with inexact line searches. 

But we won’t do it here. Those proofs get more and more involved. 



Yes. Yeah. Luenberger’s proof is in the line of this, but there are several steps over here. So we 

have just stated the final result over here. But other people have generalized this and shown that 

even if you do it inexactly, you will still get linear convergence. It’s not that linear will become 

sublinear or something like that. So, this expression that we have over here 𝜆𝑛 and 𝜆1 which 

could also be written in terms of 𝜎𝑛 and 𝜎1.  

 

When we were doing a review of linear algebra we had encountered these two numbers and what 

was that? When did we encounter 𝜎, the ratio of 𝜎𝑛 and 𝜎1? The condition number, right? So, the 

condition number of 𝑄 is simply the maximum singular value by the minimum singular value 

which is simply 

𝜅(𝑄) =
𝜎𝑛
𝜎1

=
𝜆𝑛
𝜆1

 

So intuitively what we are sort of getting from here is that the worse the condition number. 

Worse means a worse condition number is a high condition number. The best condition number 

possible is actually for the identity matrix which is 1. You cannot have a condition number less 

than 1. So the higher the condition number the bigger is this ratio 𝜆𝑛 to 𝜆1 and this constant over 

here is going to get larger and larger. 

As it gets larger and larger that means you may have to make more and more steps to reach here. 

So this is the story with how the gradient descent family of methods work. They converge and 

they converge at a linear rate. This convergence we have proven under a restricted set of 

assumptions but the class nodes have proofs for the other methods as well. 


