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Orthogonality and Conjugacy 

Now as I mentioned at the start of this module that we are going to try something a little bit more 

clever than just going along a descent direction. So, to build up to that we want to generalize our 

ideas particularly of orthogonality ok. So, when we said orthogonality let us say of 𝑝𝑖 and 𝑝𝑗, 

what did it imply? If I said that 𝑝𝑖 and 𝑝𝑗 were orthogonal very simply it just means that 

 

𝑝𝑖
𝑇𝑝𝑗 = 0, 𝑖 ≠ 𝑗. 

Now, very similar to this property is a property called conjugacy. The first 𝑐 of the name of the 

method has the word conjugate gradient. 

What does conjugate mean? So, conjugacy simply means that 

𝑝𝑖
𝑇𝐴𝑝𝑗 = 0 for all 𝑖 ≠ 𝑗. 

If this is true, then we say that these two vectors 𝑝𝑖 and 𝑝𝑗 are 𝐴-conjugate with respect to each 

other. So, if I take all of these 𝑝’s starting from 𝑝0 up to 𝑝𝑛−1, I have 𝑛 vectors ok. We say that 

this set is conjugate with respect to a positive definite matrix. That is just a definition. 



We are not saying anything about the case when 𝑖 = 𝑗, whether it should be 1 or something else 

that really does not matter. All we need is that it should be not orthogonal, but conjugate with 

respect to 𝐴. Now, you might ask, "So what? I have defined another kind of a look like a 

generalized what?" Can I write this expression in terms of a norm? Just to brush up linear algebra 

you had it in the quiz as well right. If 𝐴 is positive definite, is the square root of 𝐴 defined? What 

is it? 

 

𝐴1/2 = 𝑈𝛬1/2𝑈𝑇 

that is the eigenvalue decomposition, the square root just comes like this. So, I could write this 

and let us call this 𝑄, right. 

So, then if I define the norm with respect to this, what happens over here, right? I am going to 

get 𝑥𝑇𝑄, wait, wait a minute. So, I do not actually need to take square root of 𝑄, ok. So, let us 

just call this 𝐴. Kind of like generalizing a product also. 

Anyway, this is not important, let us scratch that. So, getting back to these newly defined 

conjugate vectors, first question is, who cares? What is so special about them? Now, it turns out 

that if these 𝑛 vectors are conjugate with respect to a positive definite matrix 𝐴, there is a 

surprising property that comes which is going to be the basis of the conjugate gradient method. 

So, let us note it down. If these vectors are conjugate with respect to 𝐴, it turns out—any 

guesses?—it is surprising, you would not expect it. These 𝑝𝑖’s end up being linearly independent, 

right? Not at all clear from the definition. These 𝑝𝑖’s are linearly independent because it is not 

satisfying to just have this property listed out like this. We want to know how this happened, 

right. 

So, when we were doing proofs, what was one of the first tricks in the bag to prove something 

like this? Contradiction, right. So, let us see if our old friend helps us out over here ok. So, I am 



going to take, let us say I am going to take 𝑙 such 𝑝𝑙-vectors. Now, what does proof by 

contradiction mean here? What is the contradictory statement? They are not linearly 

independent. That means they are linearly dependent. That means I can express what? I can 

express any one of the vectors as a linear combination of all the others. That is the meaning. 

So, let us put that down, right. So, that simply means that if I take, say some 𝑝𝑘, this is going to 

be written as a linear combination of what? 𝑝𝑖. This is almost correct, but what should I do in this 

summation? 𝑖 ≠ 𝑘, because it does not make sense. I mean, I want to write 𝑝𝑘 in terms of all 

other vectors. So, I will just exclude 𝑘 from the summation. If this is the case, then 𝑝𝑘 is linearly 

dependent. 

It can be written in terms of other vectors, and that is what we want to, right. So, this is what we 

want to see. Does this lead to a contradiction? What would your next step be? What do you know 

about these 𝑝’s? I need to somehow get 𝐴 into action, right? So if I want to get 𝐴 into action, 

what do I do? Left multiply by 𝐴 and then left multiply by some other 𝑝 right to get this into 

action, right. So, the best thing to left multiply would be. 

 

So, left I am going to put up 𝑝𝑘
𝑇𝐴. If I stick this in it is going to be great, right, because what will 

the left-hand side be? I am going to get 𝑝𝑘
𝑇𝐴𝑝𝑘. What happens to the right-hand side, right? So, 

∑ 𝛼𝑖

𝑙,𝑖≠𝑘

𝑖=1

𝑝𝑖. 

So, the property of conjugacy is going to give the right-hand side to be obviously 0 because there 

is no 𝑝𝑘 left to act on, this is going to be 0, ok. 



Now, if this is 0, let us open this up. Now, what is the best way of doing this? For example, 𝐴, I 

could have written it in terms of 𝑈𝛬𝑈𝑇. I can also write it in the outer product notation. Does 

anyone remember what the outer product way of writing it is? 

𝐴 =∑𝜆𝑖

𝑛

𝑖=1

𝑈𝑖𝑈𝑖
𝑇 

 

That is one way of writing it, right. It does not matter, I mean, you can write it like this also. Let 

us open this up. So, this is also equal to 

𝐴 =∑𝜆𝑖

𝑛

𝑖=1

𝑈𝑖𝑈𝑖
𝑇 . 

Is everyone familiar with this? You should have seen it during linear algebra. This is called the 

outer product. What is nice about it is that I have written a rank-𝑛 matrix as the sum of 𝑛 rank-1 

matrices. What is the rank of 𝐴? If it is positive definite, it is rank 𝑛. What is the rank of 𝑈𝑖𝑈𝑖
𝑇? It 

is rank 1. Why? Because every row is a multiple of each other. Therefore, it is just rank 1. 

So, I am writing a rank-𝑛 matrix as the sum of 𝑛 rank-1 matrices. This is actually very, very 

useful in things like dimensionality reduction and so on. In image processing, these kinds of 

ideas are used heavily, ok. 

Now, if I open this up over here, now if I stick 𝑝𝑘
𝑇𝑝𝑘 on both sides, what am I going to get? I am 

going to get a summation 



∑𝜆𝑖

𝑛

𝑖=1

𝑝𝑘
𝑇𝑈𝑖𝑈𝑖

𝑇𝑝𝑘, 

which is nothing but 𝜆𝑖 times the norm squared of the vector. Why? Because I see the same 

vector with the transpose. So, therefore, this can be written as 

𝜆𝑖(∥ 𝑈𝑖𝑝𝑘 ∥
2). 

If I take the transpose of 𝑈𝑖
𝑇𝑝𝑘, I get 𝑝𝑘

𝑇𝑈𝑖. So, therefore, this is the norm squared of 𝑈𝑖𝑝𝑘 

transpose squared. 

Do you see the contradiction now? It is a positive definite matrix. Therefore, the 𝜆𝑖’s are strictly 

greater than 0. This is a norm square, right? 

I am obviously assuming that the 𝑝’s are not 0, that 𝑝𝑘 is not 0, that is not a useful thing to 

consider. So, this is also greater than 0, yet this summation is equal to 0. So, as simple as that. 

This is a contradiction. 

Any questions on this? So, most of what we have—not most, entirely everything—that we have 

done so far has just been simple linear algebra starting with eigenvalue decomposition, and what 

we have proven is an interesting result: if you give me the conjugacy condition, it turns out that 

the 𝑝’s are going to be linearly independent. That is interesting. That is probably... Have you 

encountered any other way of generating linearly independent vectors? Gram-Schmidt is one 

process. 

Gram-Schmidt actually went several steps ahead, right? It made them orthogonal to each other, 

right. Here, you give me an input matrix 𝐴, I am not telling you the algorithm, but there exist 𝑛 

linearly independent vectors which satisfy this property, ok. So, that is something new. 


