
Course Name: Optimization Theory and Algorithms 

Professor Name: Dr. Uday K. Khankhoje 

Department Name: Electrical Engineering 

Institute Name: Indian Institute of Technology Madras 

Week - 05 

Lecture - 36 

 

Conjugate Directions Method - Introduction and Proof 

Now, it turns out that if you study the field of this method, before the conjugate gradient method 

came into existence, its ancestor was a similarly named method called the conjugate directions 

method. These 𝑝 vectors look like conjugate directions, right? So, just starting on the basis of 

this, the method that people invented was the conjugate direction method, and we will see it ran 

into some computational problems. What solved it was the conjugate gradient method. So, we 

need to first understand the conjugate directions method. 

Let us call this method CDM, and note that it is the ancestor of the conjugate gradient method. 

Now, what we have, as I mentioned, is 𝐴𝑥 = 𝑏, and I do not want to solve the system of 

equations directly. If I do not want to solve something directly, what is my option, what is my 

alternative? Something that is not direct is called what? Well, obviously indirect, but something 

else... If I do not get the solution in one shot, what do I call that method? Iterative method, right. 

Was our gradient descent an iterative method? Yes, because I took discrete steps, and each step 

got better, right. So, this CDM is also an iterative method. 

So, it is iterative, and guess what? I can write the iteration the same way that I wrote the iteration 

for a line search method. I want this, and the very interesting thing is that this 𝑝𝑘, I am not going 

to insist on it being a descent direction because then I am back to a gradient descent. 

 



So, I am going to say that it need not be a descent direction. But just as we know, there is no free 

lunch, there are different constraints that I need to impose on this 𝑝. Let us put a "however." No 

points for guessing the first requirement—what is it? The 𝑝’s that I choose should be conjugate 

with respect to 𝐴, meaning 𝑝𝑖’s must be conjugate with respect to 𝐴. 

The second step or requirement, rather, can also be guessed by you with a little bit of hints. 

When we did this in the tutorial, when we have a quadratic cost function, was it possible to find 

the exact step length? Was there a closed-form expression for the step length? Yes. 

Is my cost function here quadratic? It is. So, does it make sense for me at all to do line search? 

There is no sense, right? I am wasting resources doing a line search when I know what the exact 

step length should be. So, the second requirement is that all the alphas are exact step lengths, 

exact minimizers of the cost function along which direction? If I am at the 𝑘-th step and I want to 

reach 𝑥𝑘+1, what direction am I going along? 𝑝𝑘, right? If I am at 𝑘 and I want to go to 𝑘 + 1, I 

have to go in the direction 𝑝𝑘 and a length 𝛼𝑘, and because my cost function is quadratic, I can 

use simple calculus to find the exact step length required to reach there. So, I can get a closed-

form expression for 𝛼𝑘, and it is common sense to use the exact step when exact is available, 

right? 

 

So, that is the simple requirement—well, you can call it a requirement, but it is more like 

common sense. Obviously, you should use the exact step length when exact is available. 

The step length is an exact minimizer of 𝜙(𝑥) along the direction 𝑝𝑘. In other words, again this 

is a calculus review. What should I write over here? I am at the 𝑘-th step. So, what is my 

variable? 𝑝𝑘, supposing it has been given to me. 𝑝𝑘 has come from step 1 or requirement 1, 

right? 



So, 𝛼𝑘𝑝𝑘 and I am going to set this equal to 0. The 𝛼𝑘 which solves this is going to be given the 

name 𝛼𝑘, that is how we do it. In fact, this 𝛼𝑘 has a very nice closed-form expression as was 

there in the tutorial, and I am going to write it over here. Remember 𝑟𝑘 was nothing but 𝑟𝑘 =
𝐴𝑥𝑘 − 𝑏. So, I started with this whole business of conjugacy, and based on that, I said, "Okay, let 

me try to discover an iterative method." So, what are the nuts and bolts I started putting together? 

I said, "Okay, give me the directions in which I walk, they will be the 𝑝’s." Alright, and since I 

am walking along the 𝑝’s, I have the exact minimizer, so I get the alphas. 

Now, what is really surprising, and it is not obvious looking at this, is that with these two simple 

requirements, here is what happens: you are guaranteed convergence of the problem in 𝑛 steps. 

That was not possible for you in gradient descent. In gradient descent, depending on the 

condition number of 𝐴, you took more than the size of the matrix, that many steps. But here, this 

is a guarantee over here. So, let us write this down. Starting from 𝑥0, we have the sequence 𝑥𝑘 

generated as per 1 and 2 above, which converges to the stationary point in at most 𝑛 steps. It is 

so simple looking, so elegant, and all I had to do was to start by introducing just one new 

generalization of the idea of orthogonality into conjugacy. Any questions on the statement? The 

statement is clear. 

If you generate step vectors like this, I have not told you how to generate the 𝑝’s. That’s the 

hint—the devil lies in those details, right? And you get the, if I give you the 𝑝’s, for example, do 

you think 𝛼𝑘 is complicated or difficult to compute? Look at the expression for 𝛼𝑘. It is just a 

matrix-vector product, right? It is going to take no time in MATLAB, for example, to evaluate 

this. And you are done in 𝑛 steps. In fact, as I said, the devil lies in the details—that is where the 

CDM got stuck in terms of implementation. 

The cost for generating the 𝑝’s became very high, but we will get that. Now, obviously, I have 

written an extremely strong statement over here, and we would want to see a proof, right? Why 

is it that it converges in at most 𝑛 steps? That means, what? It could also be fewer. So, let us look 

at the proof. Is everyone with me? So, let us say I am at some in-between 𝑘-th step, okay? 

So, we are at step 𝑘. Obviously, I am going to assume 𝑘 is less than 𝑛, that is a common-sense 

assumption. Assume 𝑘 ≤ 𝑛. Now, if I have reached 𝑘, how many—well, nothing to do with 𝑘, 

but if I have 𝑛 as the size of the matrix 𝐴, how many conjugate, how many linearly independent 

vectors are possible in 𝑛 dimensions? 𝑛, and no more, right? 



 

So, that means how many 𝑝’s do I have? I have 𝑛, right? So, I have 𝑝0 up to 𝑝𝑛−1. This is my set 

of conjugate directions. And moreover, as we showed, they are linearly independent. So, if I 

know that they are linearly independent, I want to know how far my starting point is from the 

end point. 

So, if I write a vector like this, 𝑥∗ is where I end, 𝑥0 is where I began. In this case, is this a 

vector? Can it be written in the basis of 𝑝’s? Very obviously yes. So, I can write this as 

𝑥∗ − 𝑥0 = ∑𝜎𝑖

𝑛−1

𝑖=0

𝑝𝑖 

This is just basically a linear algebra basis expansion. 

Again, we have one tool, one trick in our box. If I want to evaluate the 𝜎𝑖’s, what can I do? What 

is the tool that I have used and we continue to use again and again? Use the conjugacy property, 

right? If I stick a 𝑝𝑘
𝑇𝐴, right, it will annihilate all terms except what? Only one term will survive, 

right. There are 𝑝0 up to 𝑝𝑛−1. If I do this trick of 𝑝𝑘
𝑇𝐴, only one guy is going to survive, all other 

terms are going to go to 0. 

So, if I left-multiply by 𝑝𝑘
𝑇𝐴 on both sides of this expression, what am I going to get? 

𝑝𝑘
𝑇𝐴(𝑥∗ − 𝑥0) 

What is going to be left on the right-hand side? Who survives this? 𝜎𝑘, right. 𝜎𝑘 is the only guy 

that survives this. By the way, is this useful? Is this a useful way of calculating 𝜎𝑘? Common 

sense answer. Is this a useful way of calculating 𝜎𝑘? Look at the expression, is it useful? No, 

because I do not know 𝑥∗. If I knew the solution, why should I do all this? This is just a way of 

manipulating the expression. Obviously, I do not know 𝑥∗. 



 

So, I cannot evaluate 𝜎𝑘 this way. One mistake over here which is what? There is something 

missing in this expression. I forgot to write 𝑝𝑘
𝑇𝐴𝑝𝑘. So, the expression I got for 𝜎𝑘 was: 

𝜎𝑘 =
𝑝𝑘
𝑇𝐴(𝑥∗ − 𝑥0)

𝑝𝑘
𝑇𝐴𝑝𝑘

. 

Now, I notice there is an 𝑥∗ − 𝑥0 over here, right? This is telling me how far I am from the 

starting point to the endpoint. But I want to somehow bring in the 𝑥𝑘, the position at the 𝑘-th 

step. So, let us try to bring that guy into this expression. 𝑥𝑘 was, if I started with 𝑥0, how do I get 

𝑥1? 𝑥1 was: 

𝑥1 = 𝑥0 + 𝛼0𝑝0, 

and to that, I would add 𝛼1𝑝1 to get 𝑥2, right? So, continuing this, the last term should be 

𝛼𝑘−1𝑝𝑘−1. So, notice one very simple thing from here. If I take 𝑥𝑘 − 𝑥0, what am I getting? 

𝑥𝑘 − 𝑥0 = ∑𝛼𝑖

𝑘−1

𝑖=0

𝑝𝑖. 

So, this distance, 𝑥𝑘 − 𝑥0, is now written as a linear combination of the 𝑝𝑖’s, but not all the 𝑝𝑖’s. 

How many 𝑝𝑖’s are coming in here? Only 𝑘 terms, from 𝑝0 to 𝑝𝑘−1. That is giving us a hint. 

Now, having gotten this expression, let us apply our usual trick. What is our usual trick? To kind 

of decimate this, see I do not know these 𝛼𝑖’s, but I do know that they were given in the recipe of 

the CDM. The 𝛼𝑖’s were given by exact line search, right? So, I can also estimate the 𝛼𝑖’s by 

using the conjugacy property. If I stick a 𝑝𝑗
𝑇𝐴 over here, it is going to isolate one of the alphas. I 

will get something to compare with. 



So, let us quickly do that. I am going to take: 

𝑝𝑘
𝑇𝐴(𝑥𝑘 − 𝑥0). 

 

What will I get? Will I get 𝛼𝑘? There is no 𝑝𝑘 left on the right-hand side, so this is going to be 

equal to 0. 

Now, here is the final trick. So, recall this expression for 𝜎𝑘: 

𝜎𝑘 =
𝑝𝑘
𝑇𝐴(𝑥∗ − 𝑥0)

𝑝𝑘
𝑇𝐴𝑝𝑘

. 

What was the denominator? 𝑝𝑘
𝑇𝐴𝑝𝑘. I am simply going to add and subtract 𝑥𝑘. Fine, I just added 

and subtracted 𝑥𝑘. Can I use the previous result anywhere? This term acts on the previous 

expression 𝑝𝑘
𝑇𝐴(𝑥𝑘 − 𝑥0), which gives 0. So, this becomes: 

𝜎𝑘 =
𝑝𝑘
𝑇𝐴(𝑥∗ − 𝑥𝑘)

𝑝𝑘
𝑇𝐴𝑝𝑘

. 

Now, we know that 𝐴𝑥∗ = 𝑏, so we can write: 

𝜎𝑘 =
𝑝𝑘
𝑇(𝑏 − 𝐴𝑥𝑘)

𝑝𝑘
𝑇𝐴𝑝𝑘

. 

This is just the residual, 𝑟𝑘 = 𝐴𝑥𝑘 − 𝑏, so the expression becomes: 

𝜎𝑘 =
−𝑝𝑘

𝑇𝑟𝑘

𝑝𝑘
𝑇𝐴𝑝𝑘

. 



Does this expression look familiar? We have seen it before. What was it? 𝛼𝑘. 

So, do you see what has happened now? I have my final distance between the starting point and 

the end point, written as a linear combination of all of these vectors from 𝑝0 to 𝑝𝑛−1, and the 

coefficients 𝜎𝑖 are nothing but the step lengths I took at each iteration. I did the first iteration as 

𝑥0 + 𝛼0𝑝0, at each iteration, I am going along that conjugate direction by a certain length 𝛼𝑘, 

and at the end of it, in 𝑛 steps, I will reach the solution. 

Subsequently, we will do some visualizations to help understand this better. To review the proof: 

we started with a set of linearly independent directions, which means that the error (start - end) 

can be written as a linear combination. The coefficients are the alphas, and this gives the exact 

distance covered during each step. 

Each time I walk along a direction 𝑝𝑘 for a length 𝛼𝑘, in the end, there is nothing left. 

Where does "at most 𝑛" come from? Can I reach the solution sooner? If the residual 𝑟𝑘 or the 

gradient ∇𝑓𝑘 is 0, then I have already reached the stationary point. So, the "at most 𝑛" comes 

from the fact that once 𝑟𝑘 = 0, the process terminates. Thus, the method guarantees to converge 

in at most 𝑛 steps. 

Notice that the only thing I need for this is the expression for the 𝑝’s. Give me the 𝑝’s, and this is 

enough. Do I need to explicitly store the matrix 𝐴? No. I never need 𝐴 in isolation. This 

expression only requires the product of a matrix with a vector. 

In numerical routines, that is a much more relaxed requirement, because storing 𝐴 requires 

memory proportional to 𝑛2, whereas the matrix-vector product only requires 𝑛 entries, which is 

much more memory-efficient. 

So, iterative methods are specifically designed for situations where you run out of memory and 

cannot do the whole thing directly. It will take more time than a direct method, but if you have 

no other options, this is the way to go. 

So, those of you using commercial software for solving systems, if you see in the log that it says, 

"using this indirect solver" or "that indirect solver", this is one of the methods in between. 

By Gaussian method (Gaussian elimination), we know the complexity is 𝑂(𝑛3), and it is also a 

direct method. So, if you have enough memory, you may prefer a direct method, as it is faster. If 

you do not have enough memory, you cannot use Gaussian elimination. 

Direct methods like Gaussian elimination and LU decomposition have the same complexity, but 

they need the matrix to be stored in memory. In an iterative method, you may decide beforehand 

that you do not want 10−16 error. Instead, you can tolerate 10−4 error, and thus abort the 

calculation earlier. This flexibility is not available in direct methods, where you must wait for the 

entire computation to finish. 

This is why, in many big data science applications, iterative methods are preferred because, after 

several iterations, you can stop when the error is sufficiently small. 


