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Discussion on doubts 

All right, so just wanted to go through the first one was the first it’s not really a doubt but it’s 

more like a observation which I want to talk about out loud because a lot of students go through 

this and very few ask this question out loud. As a student I’ve also had this question. So the 

question is I find it difficult or a bit stressful to enjoy learning a course which I innately like after 

making mistakes or not performing well in exams. Any suggestions on outlooks so that I don’t 

doubt myself or question my capability? Does this sound familiar? To whom does it not sound 

familiar? Anyone wants to raise their hand? Okay, so I mean, it’s familiar to everyone including 

me, right? As a student, I’ve also had some courses where I’ve just, my head is just above the 

water. Okay and you know so what is it that I can suggest is there is no short term answer for it 

because I tell you something it will not really make sense but I can tell you with the benefit of 

some time having passed after let us say one, two or three years have passed from this course 

you will forget the bad experience of mistakes and poor marks you forget but if you found the 

course interesting you remember that part. 

You remember being, you know, feeling curious in class, finding the content interesting. And 

that is the part that stays with you. And I can tell you this by personal experience. So many 

courses during my PhD I found very difficult because I tried to switch out of electrical 

engineering into physics. 

So I tried to cover up all the physics courses, taking the courses with other students who had had 

a bachelor’s in physics. So it was very hard, right? So every problem, and there we used to have 

every week one problem set for every course. So it was very hard. So there were some courses 

where I barely made it through. But after having graduated or even a few years after that, I felt, 

okay, I’m so glad I did not drop these courses. 

One is that you remember the good stuff. The bad stuff has a shorter time constant. The second 

thing is that, let us say you’re interested in making a technical career. And later on, courses like 

optimization and probability, linear algebra, they’re very basic courses. No matter what you do, 

the next 30 years, you’re going to use these tools. 

Now what happens if you drop a course as important as, let us say this or any other basic 

courses. The next time you come across the next new fad, today it’s machine learning, tomorrow 

it’s, I don’t know what, machine unlearning or something like that. Every time you go to learn 

that course, you will face one big mental block. Oh, I couldn’t understand optimization. There is 

no chance I’m gonna understand this new area. 

And it’s just a mental block. So you are making it harder for yourself in the future. The other 

thing is that, I mean, this is a practice for real life. In real life when you step into the real world 

of either a job or whatever else, you are going to have multiple deadlines that you cannot meet, 

multiple expectations of you that you cannot meet. This is relatively much, much simpler. 



So it’s more like training ground. It’s difficult, okay. It’s difficult for everyone. Try to make it 

work. And I can assure you, you will not regret it later. 

 

It’s easier. So every time there’s a difficult lecture, let us say, or a difficult quiz, I see the drop 

requests that come in my workflow. Okay, and what is it saying that the first sign of difficulty 

you say let’s drop but that’s bad practice in general for life right it’s never going to this is the 

easiest you will get it it’s only going to get tougher so may as well you know get on with it. 

Anyone wants to share anything related to this, anything that helps them to not drop a course or 

not feel lousy about themselves? Anyone? That you tried and it worked and you felt this is 

useful, someone else may also learn from it. Yeah. You are taking the course for the second time. 

Okay. So, what made it different for you this time? So, let me do it this time. So, if your drop 

request comes, I am going to reject it. All right, good, good, good. That’s a good spirit. Anybody 

else? Problems. 

Okay. Well, from now you are going to have a steady stream of tutorial questions and so on. So 

no worries on that at all. Okay, let us continue. Let us see. So there was, there were a couple of 

doubt sheets with an unusual naming convention. 

So it says in today’s class I got an introduction on conjugate gradient descent. This method is not 

conjugate gradient descent. This is conjugate gradient method. There’s no descent in the name of 

the word. If you use the word descent, you’re gonna confuse yourself a lot. 

So is this conjugate gradient method? The trouble is if we think, if we put the word descent in 

here, first of all, it’s wrong. Second of all, you’re going to think that somehow there are descent 

directions involved, but this is a different view or a different approach to this optimization 

problem. Can the starting point 𝑥0 be any point in the conjugate gradient method? Answer is yes. 

It can be any point, it doesn’t really matter. When can this method fail to converge? Any 

example, right? So when the method, as long as, so what are the prerequisites we had for this 

method? Did we have any requirement on 𝐴? Symmetric positive definite. 

As long as that’s the case, this method is going to converge in how many steps? At most 𝑛 steps. 

That is a guarantee and there is a theoretical guarantee behind it. We have seen one proof that 

shows it to us in that way. How do we get the 𝑝𝑘’s for conjugacy? Right, in whatever we did so 

far. Where did it go? Visualizing quadratic forms. 

Yes. I just introduced the idea of conjugacy. I never told you how we are going to get the 𝑝𝑘’s, 

but I mentioned that the devil lies in the details and how we will get it. I will talk about it in this 

class, okay. Given the matrix 𝐴, how can we tell whether conjugate vectors exist? So, supposing 

I give you a matrix 𝐴, how can you be sure that any conjugate vectors will exist or not? It is 

positive definite, so it is full rank, or not they exist again is something that we will see, okay. 

Maybe we can have a look at this right away, okay. Ok. So, let us as practice say 𝐴 is symmetric 

positive definite. 

Yeah. Correct. I am coming to that and there is one question exactly without doubt. Ok. So, this 

is given to you, do conjugate vectors exist? What is our intuitive feeling? Intuitive feeling is yes.  



 

It is sufficient for us to come up with one example when it happens. So, what is the definition of 

conjugacy? 𝑝𝑖
𝑇𝐴𝑝𝑗 = 0 𝑖 ≠ 𝑗. 

So, how do we, I mean this definition is fine, but this definition is it going to help me or can it 

help me construct a set of conjugate vectors? So, let us start with our road into this problem starts 

with the property of symmetric positive definite matrix. What is it for sure we can say about a 

symmetric positive definite matrix? It is invertible, something stronger, it is diagonalizable or in 

other words it has an eigenvector decomposition, right. That means I can write 𝐴 = 𝑈𝛬𝑈𝑇, right. 

What happens if I multiply on the right with 𝑈? 𝑈𝑇𝑈 = 𝐼 because the eigenvectors are 

orthogonal. 

So, we did this last time 𝐴𝑈 = 𝑈𝛬, right. Now, if I just take one, take this guy multiplied by one 

guy, what am I going to get? 𝑈𝑖 = 𝜆𝑈𝑖, this is basically the what? Eigenvalue problem right. 

Now, what if I left multiply by 𝑈𝑗
𝑇? Right. So, left multiply by 𝑈𝑗

𝑇, I am going to get 𝑈𝑗
𝑇𝐴𝑈𝑖 =

0 𝑖 ≠ 𝑗. So, what is that in plain English? What does that mean? The eigenvectors are a 

candidate for conjugate directions, right. 

They satisfy this property that is all I need for conjugacy. So, eigenvectors are... So, that means it 

exists and will there be 𝑛 of them? Yes, because there are 𝑛 eigenvectors even if the eigenvalue 

is repeated the eigenvectors are still distinct. This is a result from linear algebra. So, I am going 

to have 𝑛 eigenvectors. So, there is no problem I will give me a symmetric positive definite 

matrix I can find you at least one set of conjugate vectors. There’s no guesswork involved here. 

Does this mean that this is the only candidate? No, I mean, I just took one example. This does 

not in any way tell you that you are limited only to eigenvectors, okay? So this is how you get a 

system. I mean, this is one way of getting conjugate direction given the matrix 𝐴. Any doubts on 

this? Okay. Can you please explain once more how the step lengths, exact step lengths can be 

calculated for convex quadratic functions? So this was also a tutorial and also a quiz problem, 



right? So if I give you a, no, this is 𝑓 rather, right? So, who has trouble with this problem still? 

Should I, ok, let me put it the other way. 

Who would like me to derive this? How do we derive the exact step length given a quadratic 

cross function? Anyone? Everyone is fine with it? Something yes, no? Ok, who wants it raise 

your hand? Waste of time. So, everyone is familiar with it. In fact, the solutions were released 

and that also has it, right? It is what is the calculus concept being used? Essentially, chain rule to 

calculate 
𝑑

𝑑𝛼
. 

 

That is what gives me the expression. And in the case of a quadratic function if I had my 𝑓(𝐱) 
was like this 

1

2
𝐱𝑇𝐴𝐱 − 𝐛𝑇𝐱 

what was ∇𝑓? We could write it analytically it was 𝐴𝐱 − 𝐛, right? So, when I substituted this 

into the expression for 
𝑑

𝑑𝛼
, I straight away get the exact step length, right? Ok. Yeah, so this was 

another student who said in the conjugate gradient descent method as I mentioned it is not 

gradient descent method, why are the 𝐩𝑘’s valid descent directions, right? So this question really 

does not arise because we are not going at it at this problem from the point of view of descent. It 

will turn out that descent is also a quality and property of it, but that is not how we are looking at 

it and how do we calculate the 𝐩𝑖’s? I give an example. Ok, Omkar asks will performing Gram-

Schmidt on the conjugate 𝐩𝑘’s give us any results which are advantageous? Ok. 

Well once you get a set of conjugate directions there is if I do Gram-Schmidt the standard Gram-

Schmidt on it what will happen to them? They were already linearly independent, they will 

become orthogonal. Will they continue to be conjugate? Is it necessary? I mean, it is not obvious 



to me. Take a bunch of vectors, they are linearly independent and 𝐴-conjugate. Now, I do Gram-

Schmidt to them. I do not see any reason why they will continue to be conjugate with respect to 

𝐴. 

So, that is not necessary. So, it is not going to give us any advantage. However, he has 

inadvertently asked a good question. A modified Gram-Schmidt method is a second way by 

which you can arrive at a set of conjugate, ok. So, this will be one of the problems we will work 

out. Start with a set of linearly independent vectors. 

So, you all know Gram-Schmidt, the recipe for Gram-Schmidt. Start with a set of linearly 

independent vectors, apply Gram-Schmidt and that results into what? A set of orthogonal or 

orthonormal vectors. You modify that process a little bit. At the end of it, you get a set of vectors 

which are 𝐴-conjugate rather than orthogonal. 

It is straightforward, we will work it out. So, that is the second way of generating conjugate 

directions, but do not worry we will discuss it. So, this question seems to be by someone who 

knows a little bit more about optimization. Suppose instead of finding 𝐴𝐱 = 𝐛 we want to add a 

regularization term as well, can CG method be used for such a problem? Ok. So, the question is 

that let’s take for simplicity. So we said for when we started the conjugate direction method, we 

wrote our cost function like this, right? And we said that this is a better way than this approach, 

right? And the reason was this guy, this second method had what? Had a condition number of 

𝜅2, this had a condition number of 𝜅2, this had a condition number of 𝜅. 

So, numerically the first method is going to give us better results and the second method will not 

give us as good a result because of the squared condition number. Now, the question is can I add 

a regularization term? So, what this you will come across this word regularization very very 

often. What does it mean? It means adding some term over, say for example something like this. 

Now, what does this mean? We will study this towards the end of the course, but let us just get a 

sense of it because you will come across it in papers that you read and all. What is the meaning 

of this? Let us just intuitively understand this cost function. 



 

What is it saying? When will you be happy? In the real ideal world when will you be happy 

when the cost function goes to zero, that’s the best case scenario. For the best case scenario to 

happen in this case, what should happen? 𝐴𝐱 should be equal to 𝐛 and 𝐱 should be equal to 𝐱0, 

that’s the only possibility. Is that always gonna happen? Times is not going to happen. Why? 

Because 𝐱0 need not be the solution to 𝐴𝐱 = 𝐛. Which means if I go to the solution 𝐴𝐱 = 𝐛, this 

first term is 0, second term has some non-zero magnitude. 

Agreed? Come to the other side. Supposing I said 𝑋 = 𝑋0, second term is zero, first term need 

not be zero. So in both cases, there is some weight on either side. But now you say, I want you to 

optimize this. So the solution that you come across will neither satisfy this, the first term nor the 

second term, but the value of 𝛷(𝑋) would be lesser than the first two cases. Now, why would 

you be interested in such a weird solution? So this is a way of adding a constraint to the problem. 

You want to solve your original problem 𝐴𝐱 = 𝐛 but you also want your solution to be close to 

some vector which you know has some nice properties. All those details are not important. You 

want the solution to be close to 𝐱0, right? How close to 𝐱0 is controlled by this? This empirical 

parameter 𝜆, which is going to be problem-dependent. So, you can at 𝜆 = 0 you are driving the 

solution to 𝐱 = 𝐛 at 𝜆 → ∞ you are driving it to 𝐱 = 𝐱0. So, this is a very very powerful and 

common technique in image processing, machine learning, and so on. 

Add all the constraints to your problem in this way, right? This is simply here I have written the 

norm of 𝐱 − 𝐱0. Another way could be, for example, what could it be? Ok, a common example 

in compressive sensing is something like this, ok. So, let us ignore this and write this. How do 

you interpret this? I want a solution to be as close to 𝐴𝐱 = 𝐛, but what else do I want to 

minimize? The one-norm of 𝐱. 

So, one-norm of 𝐱 is something which if you study signal processing, is something which tends 

to promote solutions that have very few non-zero entries. So, you know, there are image 



processing applications where this gets used, right? So, there are lots of tricks you can play with 

this. Then the next question is how do you get 𝜆, all of those things, right? So we’ll study 

constraint optimization in the second half of this course. So this term which I’ve added over here 

is called a regularization term. 

Okay. So the question is, can the CG method be used for this problem as well? It depends on 

what is the regularization I add. This whole thing I can rewrite as a convex function. If I can 

write it as a convex function, then I can use my standard CG. If I cannot write it as a standard 

convex function, I can still use CG, I may have to go to a non-linear CG method which we will 

study after we finish the linear CG. 

So, the CG method is a very very powerful method. Right now it looks like we are using it to 

solve just 𝐴𝐱 = 𝐁, but soon you will see you can generalize it to a wide variety of problems, ok. 

Any questions on this? Has anyone heard this word "regularization term"? Right, you have seen 

it everywhere. So, at least you have a basic idea of what it means over here, ok? Okay, the 

question is how are we, so let me go to the, okay, the question is I wrote 𝐗∗ − 𝐱0 is the linear 

sum, is a linear combination of the 𝐩𝑖’s. How are we writing this to start with? So, the 

motivation is just coming from linear algebra. 

If I am in an 𝑛-dimensional space and I have 𝑛 linearly independent vectors, can we say they 

form a basis? They form a basis. The meaning of forming a basis, I can express any vector as a 

linear combination of the basis. So, the right-hand side is simply a linear combination of the 

basis vectors and that is any vector. Is 𝐱∗ − 𝐱0 any vector? It is. So, I just use simple linear 

algebra to say that the difference from initial to final point is some linear combination and then I 

showed the nice part of this at the end of it was that the coefficients of the linear combination 

ended up being exactly the step lengths that I chose in my method. 

So, if I start with 𝐱0 and if I make take these 𝑘 values of 𝛼, I land up exactly at 𝐱∗, the solution, 

right. Is this clear, whoever asked this question? Yeah, the other question was about descent 

direction. So, if you look at, yeah, if you look at the expression for 𝛼, let us just for sake of 

argument assume that my 𝐩𝑘 was not a descent direction. We are not interested in this descent 

direction analysis, but let us just take it for sake of argument. Supposing 𝐩𝑘 is not a descent 

direction, what will be the sign of 𝐫𝑘
𝑇𝐩𝑘? It will be positive. 



 

If it is not a descent direction, it is going to be positive. Why? Because 𝐫𝑘 was what? ∇𝑓, right? 

So, for gradient descent, I needed to be in the quadrant of −∇𝑓. So if I, if it is not a descent 

direction it will be positive. That means what will be the sign of 𝛼? The sign of 𝛼 will be 

negative, right. Assuming of course the denominator is positive, okay. 

If that is the case, look at here, right. So I have 𝐱𝑘 + 𝛼𝑘𝐩𝑘. 𝛼𝑘 is negative and 𝐩𝑘 is what it is. 

Now if I define a new vector 𝐪𝑘 = −𝐩𝑘, it looks just the same? It will look like a step in the 

direction 𝐪𝑘, which is now −𝐩𝑘, therefore is it a descent direction? It is a descent direction. 

Is the step length positive? Step length is also positive. So, we are back to square one. So, we 

need not worry too much about descent direction over here in the conjugate gradient scheme of 

things. It is a different approach and today’s class I will try to give you a geometric interpretation 

of how it is a different approach, ok. What was the motivation behind this method? Okay, this 

when we do the graphical example I will tell you what is the. So, there was one question I think 

does linear independence imply conjugacy? So, if two vectors, if a bunch of vectors are linearly 

independent are they going to be conjugate as we have discussed there is no real compelling 

reason by which you can say immediately yes they are going to be conjugate and it is not 

necessary. The question goes on and all of these will be answered graphically, okay. 


