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Discussion on doubts 

Ah, how do you find the order of complexity for eigen decomposition? I said it was 𝑂(𝑛3), ah I 

did not find the order of complexity I only stated it, okay. So, why is it 𝑂(𝑛3)? It is not 

something that I have proven here, it is something that you do in a linear algebra class, okay. It is 

a standard result, like Gram-Schmidt process. Ah, so we are not proving it, ah. In the affine space 

result of the expanding subspace theorem, is the 𝑥0 only a general vector or a specific 𝑥0? The 𝑥0 

that we have taken so far as the starting point of the CG method is completely general. 

There is nothing special about it. So, you can take it to be whatever favorite point you want. 

What people—if you do not have any a priori knowledge about it—you would initialize it by a 

random variable. Or there is nothing special about it. 

None of the results depend on it being something special. The only thing special is about the 

starting. Have we done that yet? The starting conjugate vector? No, right? We will come to that. 

Is the conjugate direction method and the conjugate gradient method valid only for solving 𝐴𝑥 =
𝑏 when 𝐴 is symmetric positive definite? It is a very small subset of problem. So, answer is: Is it 

only for solving 𝐴𝑥 = 𝑏 when 𝐴 is symmetric positive definite? Yes, no. 

 

Should be? Answer is no, I think we did this in class. What if I give you an 𝐴 which is not 

positive definite and I want to use the CG method, what do I do? Transformation? What 



transformation? At the back there, or do we have to go back to something like gradient descent? 

Anyone? Come on. If the eigenvalues are... But then you have changed the problem. If I change 

the signs of the eigenvalues, I make it... I change the problem itself. So, this is the problem 

statement. I want to do conjugate gradient method. You have seen that in whatever we have 

done, we have critically depended on the fact that 𝐴 is positive definite symmetric positive 

definite. But now I give you 𝐴 which is not. 

What do we do? Any idea? I am surprised because we, I actually I derived this. I thought the last 

time, you know, in fact. No, that is in a quadratic form. The skew-symmetric part does not 

contribute, right. Pre-multiply by 𝐴𝑇. If I left-multiply by 𝐴𝑇, what do I get? 𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑏. What 

is this 𝐴𝑇𝐴 matrix? Is it symmetric? Is it positive definite? It is positive semi-definite. Why? 

Because it can have some eigenvalues which are 0, right. 

As long as this is positive definite, right, you can see that 𝑥𝑇𝐴𝑇𝐴𝑥—what is this? This is ∥
𝐴𝑥 ∥2, right. If 𝐴 is full rank, then this norm can be 0 only when 𝑥 = 0. In other words, for non-

zero 𝑥, this cannot go to 0, right. So, only when 𝑥 = 0. 

So, to solve. So, as long as you tell me this is full rank, I can do this, right? I can solve this 

system of equations. The solution to this is the same as the solution to 𝑥 = 𝑏. What was the 

problem with this? I mean, slight disadvantage of doing this? We are not inverting it. Remember, 

in solving in the conjugate gradient method, we can write formally. I can write the solution is 

equal to 𝐴−1𝑏, this is formally the solution, but do I ever evaluate 𝐴−1? In whatever, we never 

evaluate 𝐴−1. 

So similarly, we will never evaluate 𝐴𝑇𝐴−1, it is just symbolically writing it as a solution, but we 

will have to do it because it is computationally very expensive to do it, okay. So similarly here, 

we want to do it, but what is the slight disadvantage of going this way? The condition number, 

right? The condition number of 𝐴𝑇𝐴 is the square of the condition number of 𝐴, right. So, in the 

subsequent few lectures, we will see what role the condition number plays, okay. So, this is, but I 

mean if you are telling me that 𝐴 is not symmetric, I have no option. I have to go through this, 

okay. So, there is some cost to be paid. 

So, it is not. So, the conjugate gradient method is not very restrictive, it can solve any 𝐴𝑥 = 𝑏, of 

course, it makes sense to solve 𝐴𝑥 = 𝑏 only when 𝐴 is full rank. So, it is not very restrictive, 

okay. 


