
Course Name: Optimization Theory and Algorithms 

Professor Name: Dr. Uday K. Khankhoje 

Department Name: Electrical Engineering 

Institute Name: Indian Institute of Technology Madras 

Week - 06 

Lecture - 42 

 

Conjugate Gradient Method 

So, what we have given enough of a kind of a trailer of what is to come, we have spoken about 

the conjugate direction method. Conjugate direction method again, to revise what was the 

essential point? There were two requirements apart from the fact that 𝐴 is symmetric positive 

definite. What were the two requirements? First one was to do CDM, what do I need? I need a 

set of conjugate directions. That is the first requirement. Second requirement: I am doing exact 

line search. So, the step lengths are coming from exact minimization. As long as I do this, what 

all, what were the good things that happened? I got convergence in at most 𝑛 steps, okay. 

So, we got a very nice method that if the size of the problem is 𝑛, in at most 𝑛 steps, I will reach 

the solution. Then why did, what, what did we find as the main problem in this method? It is a 

lot of expense, it is computationally expensive to evaluate the conjugate vectors, right. The one 

clear strategy we found was to evaluate the eigenvectors; the eigenvectors were clearly conjugate 

vectors with respect to 𝐴 that did the job for us. But evaluating the conjugate vectors—I mean 

evaluating the eigenvectors is 𝑂(𝑛3), we do not want to spend that price. So, that is why the 

CDM method remained stuck for a while until people came up with something very simple and 

very clever, which is the conjugate gradient method. 

 

So, we will study that now, okay. So, the clever thing about the CGM now is that the conjugate 

vector at the 𝑘-th iteration depends on the residual at the current state and some constant times 



the previous direction. This is, in a nutshell, the clever idea of the CGM: that instead of asking 

you to precompute the entire set of conjugate directions beforehand, it is saying use the previous 

conjugate direction 𝑝𝑘−1 and the current residual, and there is some factor of this, which is a 

scalar factor, which we will choose very, very cleverly, okay. This is one. Now, this is sort of the 

first ingredient of the conjugate gradient method. 

The second is, well, you can say it is kind of like, how do I know what is... So, what do I need to 

know to start this algorithm then? I need one 𝑝0, right? Now, if I want to pick one 𝑝0, and then, 

so it seems to me that the recipe is get first 𝑝0, and then the next one will be 𝑝1. So, in the 

absence of anything else, 𝑝0 is chosen in a somewhat obvious way, which is −𝑟0. Why −𝑟0? 

What is the significance of 𝑟0 or the residual? It is the gradient, right. So, 𝑝0 is in fact what? The 

steepest descent. 

 

So, in step 1 of conjugate gradient, I do what I already know, which is steepest descent with 

exact line search, I cannot go wrong, right? I will decrease the function value somewhat. And 

then the subsequent 𝑝’s I do not have to do anything expensive. You see what I need, if I need to 

figure out some formula for 𝛽, 𝑟𝑘 is essentially what? 𝐴𝑥𝑘 − 𝑏, so obviously I know where I am, 

so I know 𝑥𝑘, so 𝐴𝑥𝑘 − 𝑏 is not that difficult to realize, so I know 𝑟𝑘, right? Now, how do I...? 

So, this is basically it, you know, this is the conjugate gradient method and it seems almost like 

magic because we have not proved right now that the set of directions are conjugate, right, but 

we will see, we—I mean all of that comes out—but the CGM is just this. So, let us see how do 

you choose 𝛽𝑘. We want to, in sort of, enforce this conjugate property, right, conjugacy. So, let 

us recap over here: what did conjugacy, conjugacy, right, what did it tell me? 𝑝𝑖
𝑇𝐴𝑝𝑗 = 0, 𝑖 ≠ 𝑗, 

right? 

I have an expression here in equation, an expression 1, that has 𝑝𝑘 and 𝑝𝑘−1, right? So, if I 

wanted to extract out 𝛽 from here, what would be the logical thing to do? Using this conjugacy 



property, left multiply by... okay, left... should I left multiply by 𝑝𝑘
𝑇𝐴? If I left multiply by 𝑝𝑘

𝑇𝐴, I 

will get something on the left-hand side, but my 𝛽𝑘 term will go to 0, right. So, if I left multiply 

by 𝑝𝑘−1
𝑇 𝐴, what will I get? I am going to get, ah, okay. So, just write it in one shot. 

 

So, left multiplier is going to give you 𝑝𝑘−1
𝑇 𝐴𝑝𝑘 = −𝑟𝑘, oops, sorry, 𝑝𝑘−1

𝑇 𝐴𝑟𝑘 + 𝛽𝑘. Now, I want 

conjugacy. Remember 𝛽 is still in my hand, I can choose it the way I want, right. So, I choose, if 

I want to choose this to be so such that I get conjugacy, so I am going to insist that this guy go to 

0. If this guy goes to 0, what am I left with? 𝛽𝑘. 

Thus, 𝛽𝑘 therefore, has to take on this value: 𝛽𝑘 =
𝑝𝑘−1
𝑇 𝐴𝑟𝑘

𝑝𝑘−1
𝑇 𝐴

. Right. So, what has this ensured? 

That if I choose, for example, 𝛽0 according to this formula, okay, so we have started, our 𝑝0 is 

−𝑟0, very good, I made the first step using conjugate gradient method. I reached from 𝑥0 to 

where did I reach? 𝑥1, because I know the step length also, there is a closed-form expression. 

Now, I want to calculate 𝑝1, and I use this formula, I have the expression for 𝛽, I will... Am I 

guaranteed that 𝑝1 and 𝑝0 are conjugate? Yes, right, that is what I—how I chose my 𝛽. 

So, 𝑝0 and 𝑝1 are conjugate. Similarly, when I go to the next step, 𝑝2 and 𝑝1 will be conjugate, 

right. So, we are actually showing that immediate vectors are conjugate with respect to each 

other. We are not showing that 𝑝2 is conjugate with respect to 𝑝1, and all other 𝑝’s below that 

will come later, but the good news is it turns out to be so, just by this very clever choice of 𝑝𝑘, 

okay. 

So, before we go into detail a little bit of just, you know, what this expression kind of means, the 

steepest descent was using only −𝑟𝑘, 𝑝𝑘 was −𝑟𝑘 that was steepest descent. But here, what am I 

doing? There is the immediate short-term gain term, which is −𝑟𝑘, and there is a term from the 

past. So, this is what is somehow giving this method a much more, what should you say, long-

term view of the solution approach as compared to your steepest descent, okay. There is an 



analog of this in the gradient descent method also. Attributed to one of the gods of optimization 

called Nesterov, he invented this thing called the accelerated gradient method, which basically 

keeps track of the current iteration and the previous iteration to give you a faster update, okay. 

So, we will hopefully, I will give you a short brief on that, yeah. 

 

Does 𝛽𝑘 change at every step? Have a look at the expression. 𝛽𝑘 obviously depends on every 

iteration; it is not a fixed 𝛽, okay. Of course, you know that oops the way to go to the next 

remains the same and the expression for 𝛼𝑘 is also here 𝑟𝑘
𝑇𝑝𝑘. So, notice that in order to progress 

in this conjugate gradient method, what are the computational things that I need to do? I need to 

evaluate the 𝛼, I need to evaluate the 𝑝𝑘; these are the two things I need to evaluate. To evaluate 

𝛼, what do I need to calculate? There is 𝐴𝑝𝑘, which is a matrix-vector product. There is one 

matrix-vector product, then it is a vector-vector product. The numerator is one vector-vector 

product. How many vector-vector products do I have so far? Two vector-vector products and one 

matrix-vector product. Similarly, for calculating 𝛽, what do I need? I need... yes. So, this is one 

matrix-vector product, this is one matrix-vector product, right? 

So, total two matrix-vector products and then followed by two vector-vector products. This is 

what I need to do, just keeping track of the cost involved, right. As I mentioned earlier, if you 

have a way of evaluating a matrix-vector product without storing the matrix 𝐴, that works very 

well for very large problems. So, without storing the matrix 𝐴, there are some routines which 

allow you to just evaluate the product of a matrix into a vector. So, we keep track of the number 

of these products, okay. Now, this looks like the most basic version of conjugate gradient. 

It is actually possible to simplify these expressions a little bit more, okay, which is the more 

commonly found version of the conjugate gradient method. So, I will just outline some of it and 

then you will see the even simpler form of the conjugate gradient method, okay. So, 𝑟𝑘+1 − 𝑟𝑘, 

what is the definition of 𝑟? 𝑟 = 𝐴𝑥 − 𝑏, right. So, this becomes 𝐴𝑥𝑘+1 − 𝑥𝑘, right, the 𝑏’s will 

cancel off. 



Is 𝑥𝑘+1 − 𝑥𝑘 anything nice? 𝛼𝑘𝑝𝑘, right. So, this is 𝛼𝑘𝐴𝑝𝑘, okay, this is one thing that you have. 

So, I am just going to write down the final expression that you get from here. The final 

expression that you get for 𝛼 and 𝛽, 𝛼𝑘 turns out to be 
𝑟𝑘
𝑇𝑟𝑘

𝑝𝑘−1
𝑇 𝐴𝑝𝑘−1

, okay. What was the original 

expression? It is here on the top. 

 

So, what has changed? The numerator has changed from 𝑟𝑘
𝑇𝑝𝑘 to 𝑟𝑘

𝑇𝑟𝑘. Denominator, um, I think 

I made a mistake, this is, okay, this is my 𝛼𝑘. Similarly, I am going to write down the expression 

that you get for 𝛽𝑘. It is a particularly nice expression. So, do you see any advantage of this 

expression, these expressions, over the previous expressions from a computational point of view? 

How many matrix-vector products do I need? So, there is only one matrix-vector product, and 

how many vector-vector products? The numerator of 𝛼𝑘 and 𝛽𝑘 are the same. 

So, that is 1. Then I have in the denominator one more, right. Is there anything else? How many 

vector-vector products do you see? 1, 2, I claim there are only 2 because I am going to store 

these values, right. So, 𝑟𝑘−1
𝑇 𝑟𝑘−1 I will get from the previous iteration, right. So, actually this is 

just one vector-vector product if I am doing it cleverly, okay. So, what should I store? Remember 

𝑝𝑘 = −𝑟𝑘 + 𝛽𝑘𝑝𝑘−1, okay. 

So, to get this, what all do I need? To get 𝑝𝑘, I need 𝑟𝑘, I need 𝑝𝑘−1, and to get 𝛽𝑘, what else do I 

need? 𝑟𝑘−1, right. 𝑟𝑘−1. So, if you give me 𝑟𝑘, 𝑝𝑘−1, and 𝑟𝑘−1, I get my 𝑝𝑘 completely. So, I 

know 𝑝𝑘, what is left for me to go to 𝑥𝑘+1? I need a step length 𝛼, right, and the expression for 

𝛼, do I already have it? Look at the expression for 𝛼. Once I get 𝑝𝑘, do I have 𝛼𝑘? I have it 

already, right. So, the good news is that as I am going from iteration to iteration, I do not have to 

store the entire history. What do I need to store? Current iteration, previous iteration. 

Everything, you can see the subscripts are either 𝑘 and 𝑘 − 1. I do not need to store starting from 

0, 1, 2 up to all of that. So, what is that telling you? That if my size of the matrix is 1 million by 



1 million, I do not need to keep a history of 1 million residuals and the 𝑝’s. All I need is current 

iteration, previous iteration. So, this is why it is also a very, very powerful method. 

There is no elaborate history to be kept. So, it is computationally fast. It is also memory-wise 

very efficient. There is no unnecessary storage required over here. Any questions on the basic 

flavor over here? It seems almost too easy, right? But it’s one of those very elegant, clever 

results in optimization that came about. 

Now, unlike in the steepest descent method where we proved the rate of convergence, this time 

we are not going to prove the rate of convergence. I am just going to state it. Turns out that the 

steepest, sorry, the conjugate gradient method also has a linear rate of convergence, okay. So, 

yes, at most 𝑛 steps. No, this is telling you at what rate it is happening, right, but remember that 

when I say it is a little bit misleading to say that both steepest descent and conjugate gradient 

method have linear rate of convergence, the coefficient of that rate is going to be different from 

method to method. So, one coefficient can be 1, another coefficient can be 100. 

Right. So, you will still see the methods progressing at a different speed, and we will see that 

later in this lecture when we open up MATLAB, okay. But the rate of convergence in the order 

notation is still linear, okay. So, this is being stated without proof, okay. There are some more 

very interesting properties, yes question. Do we have two vector-vector calculations? Which are 

those? First is 𝑟𝑘
𝑇𝑟𝑘, second is 𝑝𝑘

𝑇𝐴𝑝𝑘, and the second... oh right, yes, he is right, there are 

actually two vector-vector products. I do not have to calculate 𝑟𝑘−1
𝑇 𝑟𝑘−1 because that was already 

stored. He is right, there are two vector-vector products. 

 

Now, apart from just saying that it has linear rate of convergence, there are some interesting, you 

know, rates over here which we will just have a look at the analysis of it, okay. So, let us assume 

𝐴 has, remember we said that it converges in at most 𝑛 steps. So, that is very tempting, that at 

most 𝑛 steps means, can it be faster than 𝑛? So, there is a theorem which tells us when it can be 



faster than 𝑛, which is again very nice linear algebra. So, let us say that I have eigenvalues of 

ordered in this form, okay. 

When I write it like this obviously, these 𝜆’s may or may not be distinct they can be repeated 

also. We know that eigenvalues can get repeated, but the eigenvectors will still be orthogonal. 

Keep that in mind. Now, for a positive definite matrix the condition number how can I write it? 

Condition number =
𝜆max

𝜆min

 

Now, if I know the eigenvalues of 𝐴, let us take two cases. Given some big fat matrix 𝐴 (I mean 

not fat square matrix, but given a big matrix 𝐴) I need not know its eigenvalues. I mean if I know 

its eigenvalues you have already given me a lot of information about it, but let us say I do not 

know the eigenvalues that is one case and the other case which is more useful for analysis is let 

us say I give you the eigenvalues. 

 

So, let us just look at the rate of convergence in both cases, you will see something very 

surprising. So, what you have is that at the 𝑘 + 1-th iteration, the distance between where I am 

and the solution turns out to be. 

This turns out to depend on the eigenvalue. Can we try to make sense of this? I mean when do 

you think this will make a difference? The hint is at most 𝑛 steps. So, can you see if it is possible 

for us to make sense of this expression? 

Let us say I have repeated eigenvalues. So, let us say the first 5 eigenvalues are distinct and then 

I have the remaining 5 are repeated and they are the same. So, what is this telling us? Is it telling 

us in what will happen to the rate of convergence? 



Because 𝜆1 is still the same right? So, if your smallest eigenvalue is repeated, if your smallest 

eigenvalue is repeated then what is going to happen? 

So, let us say the smallest eigenvalue is repeated 5 times. So, at 𝑘 = 1, what will I see over here? 

On the left-hand side I am going to be looking at 𝑥2 − 𝑥∗. Over here what will I see? 

𝜆9 − 𝜆1 

𝜆9 − 𝜆1 is not 0, the first 5 eigenvalues are repeated. So, this is fine, it is some number. Now, as 

the iterations go, supposing I reach where 𝑘 = 5, at 𝑘 = 5 what happens? I am looking at the 

distance 𝑥6 − 𝑥∗. 

What is the expression I have over here? 

𝜆10 − 𝜆5 

What is 𝜆5 − 𝜆1? It is 0, so boom in the step 5 at 𝑘 = 5, 𝑥6 − 𝑥∗ = 0. So, if I have repeated 

eigenvalues, that is where this at most 𝑛 steps result gets invoked that in fact you can have 

sooner convergence and we can also look at that in the case of MATLAB. 

This is of course when I know the eigenvalues of 𝐴. 

Any questions or doubts on this or is this analysis clear? 

Now, if I do not know the eigenvalues of 𝐴, but obviously, you need to tell me something and let 

us say that the something that you are telling me is the condition number. So, I need the same 

expression that I had, but now in terms of condition number. So, what you get is: 

Whether there are repeated eigenvalues or not, I really do not know it. So, does this look familiar 

from the case of steepest descent? In the case of steepest descent I had almost the same 

expression with the change that instead of √𝜅 I had 𝜅 right? So, this is why even though it is a 

linear rate of convergence, this quantity is going to die down faster. 

This is why this is one important aspect of it. So, this is just information, I have not proven it in 

any way. But both of these things we will visualize when we open up MATLAB in a few 

minutes. Now, we have not actually proven the entire conjugate vectors to be, I mean the vectors 

to be conjugate with respect to each other. But we can do some, I am going to show you two 

interesting properties which are there for the conjugate gradient method which get used a lot. 

The first one is this sort of confirms our intuition that every time you make progress in the 𝑘𝑡ℎ 

direction you never revisit this is kind of again quantification of that. That the error at the 𝑘𝑡ℎ 

step is perpendicular to the error in all previous steps. This is what this statement is saying right. 

If you replace math by English, 𝑟 is representing residual, which is representing error. Error at 

the 𝑘𝑡ℎ step is perpendicular to error at all previous steps, right? 

And this is a surprisingly easy to prove. If you take our expanding subspace theorem, what was 

the statement of this expanding subspace theorem? Can someone remind me? 



 

𝑟𝑘
𝑇𝑝𝑖 = 0 for 𝑖 = 0 to 𝑘 − 1 

What is the definition of 𝑝𝑖? By now we should know that 𝑝𝑖 is equal to: 

So, the way to remember it is 𝑝𝑖 is if I were, if I did not know anything I would do gradient 

descent. If I did that 𝑝𝑖 would be equal to −𝑟𝑖. You got the first time, right? Then I said hey we 

want something a little smarter than gradient descent, which is to remember something about 

what previous direction. So, there should be a 𝑝𝑖−1 and there should be a 𝛽, right? 

So, it is very intuitive to remember this expression. So, if I now left-multiply by 𝑟𝑘
𝑇, what am I 

going to get? 

𝑟𝑘
𝑇𝑝𝑖 = 𝑟𝑘

𝑇(𝑟𝑖 + 𝛽𝑖𝑟𝑘−1) 

This term is zero by the expanding subspace theorem. So, I get: 

0 = 𝛽𝑖𝑟𝑘
𝑇𝑝𝑖−1 

Anything else? What about the second term on the right-hand side? Also zero by the same 

theorem, right? So, it implies that: 

𝑟𝑘
𝑇𝑟𝑖 = 0, 𝑖 = 0 to 𝑘 − 1 

So, there are lots of these very small results you will find in the case of the conjugate gradient 

method. The ingredients are very few, it is like a khichadi with very few ingredients. What are 

the ingredients? There is an expression for 𝛽. How did we derive that expression for 𝛽? Here, 

just by taking the initial definition of 𝑝𝑘 and demanding conjugacy, I want conjugacy. This gives 

me an expression for 𝛽, I have one expression for 𝛽. 



I have one expression for 𝛼, right? And that is basically it. Everything else just follows from 

here, some amount of algebra, and I land up with this interesting expression. There are several 

other such expressions that are used. For example, when I showed you the simplified version 

here, these simplified versions, they also come just by using these simple algebraic identities. 

So, now what we will do is we will have a look at a code implementation of the conjugate 

gradient method and we will sort of have a trace against steepest descent and let us see what 

happens. So, before we go to that, is there any difficulty here so far in the expression? 


