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Preconditioned Conjugate Gradient - Part 1 

So, the last time we looked at the conjugate gradient method, we saw that it blew steepest 

descent out of the water, right? So, today’s class is to show you that all is not hunky-dory; there 

are places where it runs into trouble, okay? So, let us begin. So, I am going to draw an 

approximate graph, okay? So, let us say that we are very happy with our CG method and we 

want to study how it behaves with the condition number. We know that it is going to get worse 

as the condition number increases, but how much worse, right? So, there is MATLAB code on 

the website that we discussed last time, which allows you to manually adjust the condition 

number and make your problem easier or harder. Then, you can plot this graph, which shows you 

how close I get to the solution as the iterations progress. So, what you will find is something like 

this: This is, let us say, 𝜅1; then you will have 𝜅2, and after that, you will have 𝜅3. So, 𝜅1 is 

something like this: we do not need the exact details, but the condition and behavior of the error 

are something like this. 

 

Okay, and this is actually in the log. So, what are the few observations you make from here? For 

example, if I were interested in a certain threshold to stop my iterations, or a specific accuracy, 

that would be represented by a horizontal line in the graph or a vertical line on the right. So, let 

us say that I want to continue as long as I receive an error below this threshold, 𝜏; I am happy 

with my solution, right? It can happen that I do not want an error of 10−16; I want 10−4, which is 



good enough for me, okay? So, this 𝜏 could be, for example, 10−4. Now, what is our very 

obvious observation? To get the same error, I need more iterations if the condition number is 

worse, right? So, we can say that for the same error, a higher condition number implies more 

iterations. 

This is slightly confusing because it should be 𝜅; this is 𝜅, not 𝑘. And if I were to have fixed 

computational resources and wanted to devote only a limited number of iterations to this 

problem, that would result in a vertical line on this graph. So, something like this is my vertical 

line. So, what is our observation when looking at this vertical line? If I have a fixed number of 

iterations, the one with a higher condition number has a higher error, right? So, for a fixed 

number of iterations, a higher 𝜅, which is the condition number, implies a greater error. Those 

are the two very basic observations I can make by looking at this graph. 

So, obviously, people looked at this and said, "Hey, is there a way to improve this?" So, that is 

what leads to the idea of the preconditioned conjugate gradient method. So, let us see what it 

means. So, we are going to stay within the realm of the conjugate gradient method, which means 

that I am constrained to use my CG routine. Therefore, what is the limitation on 𝐴? What can I 

not sacrifice for 𝐴? It is only when the matrix is symmetric positive definite that I can use the CG 

method I have studied. So, I am going to keep it fixed as a must to be symmetric positive 

definite, okay? Remember for CG what I was trying to solve: 𝐴𝑥 = 𝑏. 

We wrote that neatly as an objective function in the form of a quadratic expression. Now, let us 

stare at this a little bit; it has a bad condition number. I still want to use the CG routine to solve 

this. What could I possibly do? Multiply with another matrix. Multiply with the other matrix, 

then what will happen? So, that is a good idea. 

 

So, supposing I multiply this by some matrix, let us say 𝑇, and then multiply both sides by 𝑇. 

Therefore, 𝑇𝑥 = 𝑇𝑏, okay? The motivation is that 𝑇𝐴 may have a better condition number than 



simply 𝐴. So, 𝜅(𝑇) is greater than 𝜅(𝐴). Is that a good idea? The answer is literally staring you 

in the face. Is that a good idea? 

No. I see some head shaking; why not? I mean, if the condition number is less than that, it’s 

great, right? Why is it a bad idea? The matrix cannot be input into my algorithm unless I ensure 

that 𝑇𝐴 is also positive definite, which is not guaranteed, right? So, 𝑇𝐴 may not be symmetric 

positive definite, but the motivation you have here—this idea—is essential; it is the only lever 

we have in our hands. If we can somehow improve the condition number, then there is some 

hope. So, this looks like a minor roadblock on the way. Now, let us pretend for a minute that the 

symmetric positive definite conditions allow us to relax. 

Let us pretend for a moment. Let us live in an ideal world. In an ideal world, it would seem very 

impractical, which is why you may have a difficult time guessing it. What is the ideal 

temperature? An inverse right. What is the best condition, or in other words, what is the best 

condition number I can obtain? 1 is possible only if 𝑇 = 𝐴−1, right?  

 

So, in the ideal la-la land, 𝑇 = 𝐴−1, and in this ideal world, this is ridiculous because if I already 

knew 𝐴−1, there would be no problem left, right? (The sentence is grammatically correct as it is.) 

No changes are needed. However, that gives us an idea of what we can do. The trick I am going 

to use is to achieve two things: a reduction of the condition number while maintaining positive 

definiteness. So, supposing I take 𝐴𝑥 = 𝑏, and as suggested, let us multiply by some matrix. 

Instead of saying 𝑇, I am going to create a new convention: I will multiply by a new matrix, 𝐿. 

Therefore, 𝐴𝑥 = 𝐿𝑇𝑏. Okay? So, I am performing a right multiplication by a new matrix, where 

𝐿𝑇 could be my 𝑇, okay? I am still facing the same problem as before: I do not know whether it 

is positive definite or not. Is there a clever trick I can use? Let’s assume that 𝐿 is your favorite 

invertible matrix. Is there a small trick we could use to shift this or transform it into another 



problem where I have a symmetric positive definite matrix? So, let me give you a hint: Can I do 

something here? It is related to the question that was just asked. 

What property of 𝐿 was inquired about? Is 𝐿 invertible? So, what can I possibly insert here: 𝐿 

and 𝐿−1? So, let us try that again. So, I am going to get 𝐿𝑇 (not 𝐿𝐴𝐿𝑇𝐴𝐿−1𝑥) is equal to 𝐿𝑇𝑏, 

right? So far, there has been no cheating; I just need 𝐿 to be invertible. Now, what is next? Is it 

looking closer to what I wanted it to be? I need to group some terms neatly. So, if I group it like 

this and that. So, I am going to let us call this �̂�, let us call this �̂�, and let us call this �̂�. 

Therefore, I get that �̂��̂� = �̂�. Now, is 𝐴 a symmetric positive definite matrix? To check if a 

matrix is positive definite, what do I need to do? I need to quickly compute the transpose of �̂�; 𝑧 

should be greater than 0 for all 𝑧 ≠ 0. Is that the case? The sentence "It is." is already 

grammatically correct. If you need a different form or context, please provide more details! It is 

correct because you can immediately see that this will be 𝑧𝑇𝐿𝑇𝐴𝐿𝑧, and I can combine this; it is 

already greater than 0, right? So, this is symmetric positive definite—perfect, right? I do not care 

what �̂� is; it is whatever it is—some new vector �̂�. 

So, I have kind of shifted the problem; I have not solved it. I have just kicked the football a little 

further down the field. What have I kicked it into now? What is the new problem that I need to 

address? Give me a good solution; otherwise, how do I proceed? Okay. So, let us see what we 

can do. So, let us assume this. 

 

Let us defer the choice of how to determine 𝐿 for now, but we have a way to improve the 

condition number of �̂� and solve the problem. Once I solve for �̂�, how do I retrieve my 𝑥? 

Multiply by 𝐿, right? So, once I get it, I will proceed. So, 𝐿−1𝑥 = �̂�. So, if I can solve this 

problem, I just need to multiply by 𝐿, and once I get my 𝑥 back, I am done, okay? Now, the part 

of how to get 𝐿, we will get to. As I mentioned, a very, what should I say, important question is 

do I need to re-derive the entire thing? 



I could solve supposing I gave you an 𝐿; you could take this guy and feed it into a CG routine 

and get the solution, right? Now, the question and the little more clever thing to do is you already 

have a piece of code written for the CG method, where the inputs were 𝐴 and 𝑏, right? That is 

what I had, and later I discovered that the condition number was bad. Now, I am asking if I can 

be a bit more clever. So that I can use that code as much as possible without having to recreate 

all the variables in terms of the hatted quantities, okay? So, you will find a surprisingly simple 

answer: there are actually very few modifications you need to make in order for this to work. So, 

we will work that out. Having worked that out, we will see a very clever choice for 𝐿 that will 

come up—there are lots of. 

It’s a field in itself. So, this 𝐿, for example, is what is called a preconditioner because it is 

conditioning the preconditioner, right? It is changing the condition number. There are lots of 

methods we will talk about—one possible way of doing it—but has everyone got the motivation 

over here? We did some very simple linear algebra tricks to make sure it’s symmetric positive 

definite, that’s all. 


