
Course Name: Optimization Theory and Algorithms 

Professor Name: Dr. Uday K. Khankhoje 

Department Name: Electrical Engineering 

Institute Name: Indian Institute of Technology Madras 

Week - 06 

Lecture - 47 

 

Preconditioned Conjugate Gradient - Part 3 

Let us have a look at this, let us come back to our choice of 𝐿. Now, we had our original system 

where there was 𝐿𝑇𝐴𝐿, right? This was our 𝐴.̂ So now again, we are going to pull one rabbit out 

of the hat. There is a very nice theorem from linear algebra that gives what is called a Cholesky 

decomposition of a matrix 𝐴. You may or may not have heard of it. So, let me write it down, you 

can look it up. So, the Cholesky decomposition of a symmetric positive definite matrix 𝐴 is a 

very nice 𝐶𝐶𝑇. 

 

So, 𝐶𝐶𝑇 where 𝐶 has some property, what is that property? Does anyone know? The Cholesky 

decomposition 𝐶 is lower triangular. Now, this 𝐶 being lower triangular, let us have a look once 

again at our 𝐿𝑇𝐶𝐶𝑇𝐿. Let us say that I had my 𝐴,̂ right? So, what would be the ideal choice that 𝐶 

should take, or rather, 𝐿 should take? Let me put it that way. 

Supposing I knew the Cholesky decomposition of 𝐴, what would you choose as 𝐿? If I can make 

this into the identity, I am done. So, the best thing would be that 𝐶𝑇𝐿𝑇 = 𝐶−1, right? Then I 

would be done. Of course, the Cholesky decomposition or exact Cholesky decomposition is 

almost as expensive as calculating 𝐴𝑥 = 𝑏, so we are once again back in the same situation. 

Looks nice on paper, but I cannot use it. 



However, here comes the real rabbit out of the hat: there is something called an incomplete 

Cholesky decomposition, which says that 𝐴 could be approximately written like this 𝐾𝐾𝑇, where 

𝐾 has a very interesting property. 𝐾 is very similar to 𝐶, okay? In the sense that all the... So, 

what is 𝐾? 𝐾 is a sparse lower triangular matrix. So, it does not agree with 𝐿 or 𝐶 completely, 

meaning if I calculate, for example, the Frobenius norm of this, meaning entry-wise take the root 

mean square, what will I get? I will not get 0. So, it is not exact, and that is why it is called the 

incomplete Cholesky decomposition. 

 

So, it is cheap to compute, and that is why it is used in this way. Supposing 𝐴 is, I do this 

incomplete Cholesky decomposition, I get my 𝐾𝐾𝑇, right? So, how does that help you? So, if 

this is done... Now comes the practical case. Now, I can choose my 𝐿𝑇 to be what exactly like 

before, right? So, here I have chosen 𝐿𝑇 to be 𝐶−1, which we said is impractical because it is as 

good as having solved the problem. Now, I have relaxed my requirements and said fine, so 𝐿𝑇 =
𝐾−1. 

So far, it is good because 𝐾 is inexpensive to compute. Now, the question is, what about 𝐾−1? 

𝐾−1 may not be very nice, right? So, actually, we do not need 𝐿𝑇. What do I need to solve? Let 

us go back here. 

What I need to solve is this: 𝐿𝐿𝑇𝑟𝑘 = 𝑦𝑘. So, let us plug that in over. So, 𝐿𝐿𝑇𝑟𝑘 = 𝑦𝑘, this is what 

I need to solve, which will become 𝐾−1𝐾−1𝑇𝑟𝑘 = 𝑦𝑘. That is what I need to solve, right? So, can 

I simplify this further? I can take this to the other side, right? So, what will I get? I will get 𝑟𝑘 =
𝐾𝑇𝐾𝑦𝑘, right? Or did I get a one transpose wrong? 

Let us... So, let us check. Is this expression correct? Sorry, sorry, this is what is wrong. So, 𝐿 is 

actually... So, if I write over here, 𝐿 = 𝐾−1𝑇, right? 



So, this is where I made the mistake. So, this is going to be 𝐿 = 𝐾−1𝑇 multiplied by 𝐾−1𝑟𝑘, 

right? So, what do I do next? Inverse and transpose can be swapped, right? And what I am going 

to get is 𝑟𝑘 = 𝐾𝐾𝑇𝑦𝑘, right? So, this has to be solved. Now, when I asked to compute the 

Cholesky decomposition of 𝐴, what was given to me? 𝐾𝐾𝑇, 𝐾𝐾𝑇 is appearing right over here. 

This has been given by incomplete Cholesky. I do not have to calculate the inverse of a matrix 

anywhere, okay? So, that is the first... So, that is the first advantage, right? No need to compute 

this thing. Now, here is, I mean, this is why this whole idea of preconditioning with incomplete 

Cholesky is so clever. I need 𝑦𝑘, right? Because 𝑟𝑘 I can compute, how do I compute 𝑟𝑘? 𝐴𝑥𝑘 −
𝑏, if I know I am at 𝑥0, 𝐴𝑥0 − 𝑏, I can compute, I got my 𝑟𝑘, but I need, according to this 

expression, 𝑦𝑘. How can I cleverly solve this equation without having to spend order 𝑛3 in 

inverting 𝐾𝐾𝑇? 

 

The hint is the structure of 𝐾. What is the structure of 𝐾? It is lower triangular, right? So, now let 

us look at this a little bit: this is 𝐾𝐾𝑇𝑦𝑘. Supposing I combine this and call this 𝑧𝑘, right? So, 

therefore, this is equal to 𝐾𝑧𝑘, where 𝐾 is lower triangular and sparse. It is like this. Do I need to 

actually invert this, or is there a clever way of solving this to get 𝑧𝑘? Visualize this matrix, the 

shaded part is where the numbers are non-zero and the rest is 0. 

Identity matrix. Something much simpler you could. So, if you had if you saw this matrix in 

class 12, you could solve it. What is it? Back substitution, right? The lowest... I mean, for 

example, 𝑧𝑛, right, is it available immediately? This entry, supposing this is being multiplied by 

𝑧1 up to 𝑧𝑛, right, 𝑧𝑛 in one... Sorry, not 𝑧𝑛, 𝑧1. 𝑧1, I will get 𝑧1 times 𝐾11 is equal to 𝑏1, I am 

going to get 𝑧1 in one shot. 𝑧2, how will I get? Same thing, back substitution, right? Because 𝑧1 

is known, 𝑧2 I will get. There is no inversion happening, this is simple algebra, right? This is 

called what? Forward substitution, I think, right? I get confused. One is called forward 



substitution, the other is called backward substitution, right? Forward probably because you are 

starting from 𝑧1 and going down. So, let us call this forward substitution. I may be wrong. 

So, I get 𝑧𝑘 cheaply, and it is a sparse matrix. So, I do not have to actually calculate every single 

thing. The number of operations may be even lesser than a dense lower triangular matrix. It may 

not be 𝑂(𝑛3), well, it will be 𝑂(𝑛2) if it were a dense lower triangular matrix, because each one 

is getting multiple. This is similar, exactly similar to LU decomposition, but the decomposition 

price was 𝑂(𝑛3); here I am giving you the decomposition at a cheap price. Having gotten the 

decomposition, the solution is not 𝑂(𝑛3). The decomposition was 𝑂(𝑛3). 

 

The decomposition? Yeah, LU decomposition is 𝑂(𝑛3), Cholesky decomposition is 𝑂(𝑛3), 
incomplete Cholesky is not 𝑂(𝑛3). That is the catch, right? So, I have got 𝑧𝑘. Having gotten 𝑧𝑘, 

how do I get back 𝑦𝑘? This will not be order 𝑂(𝑛2) also because it is sparse, right? It may be like 

𝑂(𝑛log𝑛) or something. 𝐾𝑇𝑦𝑘 = 𝑧𝑘. I know 𝑧𝑘 from forward substitution; can I get 𝑦𝑘 cheaply? 

What is the structure of 𝐾𝑇? Upper triangular, right? So, it is like this, and this is 0. Now, what 

do I do? From which order do I start? I will start from 𝑦𝑛. 

So, I will start with 𝑦𝑛. 𝑦𝑛 × 𝐾𝑛𝑛 = 𝑧𝑛. In one shot, I get my 𝑦𝑛, and I move back. So, I would 

call this back substitution, and that gives me my 𝑦𝑘, very elegant. And finally, I mean, this does 

not need to be said, but do I have to calculate a new incomplete Cholesky decomposition at every 

iteration? No, given 𝐴, I get 𝐾𝐾𝑇, and I am with that 𝐾𝐾𝑇 for the rest of my iteration. So, all I 

have to do is one-time cost of computing 𝐾𝐾𝑇, and then forward substitution, back substitution, 

it is very, very quick. That gives me my 𝑦𝑘’s, right? 

Once I get my 𝑦𝑘’s, if I scroll back over here, I got my 𝑝0 in step 7. So, I know the first 

conjugate direction. It is −𝑦0, right? Once I know my 𝑦0, then I know my next 𝑝 is also 

calculated from step 6. Betas and alphas are available over here. Now, you notice the expressions 

are very nice in terms of 𝑦𝑘, 𝑦𝑘+1. Everything is available with me, right? 



So, the update equations are the same. The only places in the code where I have to modify are 

new expressions for 𝛼𝑘, 𝛽𝑘, and one additional step of solving this forward substitution and back 

substitution. You should be very careful to put your incomplete Cholesky outside the while 

loop—a one-time step to calculate 𝐾𝐾𝑇, that is stored and then used every time in each iteration, 

right? If you put it inside, then you would kill yourself, correct? Right. So, when we look at here 

𝑟𝑘, 𝑟𝑘 is needed to calculate 𝑦𝑘, right? This final discussion, which we had, we needed 𝑟𝑘 to get 

𝑦𝑘. 

Any other questions? Ruben? Any part that is not clear? Should we walk through it again? We 

have the starting point. Let us look at our start. Let us try to write this now. Summary: So, what 

are we given? You gave me 𝐴 and 𝑏, right? And what did I say? I said bad condition number, 

okay. So, then what did I do? I took 𝐴 and I did not equal to approximately equal to 𝐾𝐾𝑇, which 

was what? I am going to use the MATLAB name for it, I chose okay. 

This is cheap, fine, yeah. 𝑟𝑘 can be simply calculated as 𝐴𝑥 − 𝑏. Which equation? We are never 

inverting it; we are just calculating it. No, it is wait, here, this expression, that is the expression 

we are looking at, in terms of... because 𝐿 and 𝐾 had an inverse relationship. So, step 1 is this. 

Step 2: What do I do? I am going to pick a random or your choice of what 𝑥0. Fine, this is your 

wish. What would be the next step? I need to now know, I need to move, right? 

So, I need to get 𝑝0, right? 𝑝0 was equal to what? −𝑦0. To get 𝑦0, what am I doing? Solving 

this... is that equation over here? 𝑟0 is equal to 𝐾𝐾𝑇𝑦𝑘. 𝑟0 is equal to 𝐾𝐾𝑇𝑦0. How would I get 

𝑟0? Simply 𝐴𝑥0 − 𝑏, right? So, I can do this by, let us give it a nickname, forward substitution, 

back substitution (FB), FB gave me this. So, I got my 𝑦0, minus that gave me my 𝑝0. What is the 

next step that I need? Alpha, right? I need alpha, 𝛼. So, an expression for this, right? The 

expression for this was what? 

 



𝑟𝑘
𝑇𝑦𝑘

𝑝𝑘
𝑇𝐴𝑝𝑘

, right? So, at this point, I need 𝑟0, 𝑦0, 𝑝0, 𝐴𝑝0. Do I have all of these done? So, I have this. 

The next step would be, I have got my 𝛼, I have got my 𝑝0, where can I go next? I can go to my 

next 𝑥, right? So, I can write 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘. Remember, I am not writing this from first 

principles, I am writing this after that worked-out expression. Otherwise, if I were naively 

writing this, I would put hats on everything, but I simplified that to simply this. So, this is what I 

got. Do I know everything here? Yes, I do, right? So, I have reached my new 𝑥𝑘+1. 

The original 𝐴, that is what we worked out. We can do more work, but we do not like to. This is 

the original 𝐴, when we started with the very first step. If you notice this, originally this 

expression would appear everywhere, 𝑝𝑘
𝑇𝐴𝑝𝑘, but this is actually nothing but 𝑝𝑘

𝑇𝐴𝑝𝑗, if you 

substitute it, right? So, that way, I avoid calculating some new 𝑝𝑘, because remember, for new 

𝑝𝑘, I need this 𝐿−1. I do not want to get into any inverses, right? So, 𝛼𝑘 is done, it is the original 

𝐴, 𝑥𝑘+1 is done. Before I go to the next iteration, I should be careful to calculate what my 𝛽𝑘, I 

mean... 

So that I get my 𝑝𝑘+1 for the next iteration. So, I will use my 𝛽𝑘 expression, which was also in 

terms of 𝑟𝑘 and 𝑦𝑘, right? So, this was 
𝑟𝑘+1
𝑇 𝑦𝑘+1

𝑟𝑘
𝑇𝑦𝑘

. Yeah, that is right, right. Again, can I calculate 

this? Can I calculate 𝑟𝑘+1? Yes, because I know my new 𝑥𝑘+1 from the previous step. So, I can 

calculate my 𝑟𝑘+1, and I need 𝑦𝑘+1. Can I get 𝑦𝑘+1? Yes, why? Because I know 𝑟𝑘, I know 𝐾𝐾𝑇, 

and I know therefore, I can get 𝑦. 

 

So, all of this can also be done and as a result my 𝑝𝑘+1 update expression also goes through 

which was 

𝑝𝑘 = −𝑦𝑘 + �̂�𝑘𝑝𝑘−1. 



Now, I know everything over here, I know my betas, I know my y’s, I know my previous p’s, I 

can go to the next p, right? So, basically if you look at now this what we have done so far, my 

earlier CG routine needed minimum modifications. In some places I just had to substitute write 

this 𝑦 character in two places. Other than that, this apart from this extra step of forward 

backward calculation for getting my y’s, it just goes through. 

So, this is the entire preconditioned conjugate gradient method. It is a very beautiful piece of 

linear algebra at a low cost. And this because if you look at I really encourage you to look at the 

MATLAB documentation of this incomplete Cholesky, they actually give an example of how to 

speed up CG in that in one of the examples. You take in several arguments you can even increase 

the threshold to make this more and more accurate. So, remember what I wrote over here this 

expression. 

How different is it from 𝐴? You can make it closer and closer, you can make it coarser or 

coarser. So, the more effort you expand into this, that is price paid, but your condition number is 

falling more and more, right? In the ideal case, if this actually became the Cholesky 

decomposition, your condition numbers become 1, that is as good as it gets. So, obviously, that is 

not worth it. 

So, you may as well do it, right? So, this is if you look at any standard numerical linear algebra 

routine for solving that implements the conjugate gradient method, no one will have it plain 

conjugate gradient; everyone will have a preconditioned version of it, and in the market, there 

are several preconditioners we just spoke about one of them, and all of them are based on some 

one small or a few small clever tricks of linear algebra, which is why linear algebra is a very 

strong prerequisite for optimization. I would not say that both are order 𝑛3, solving 𝐴𝑥 = 𝑏 as a 

direct method will be 𝑛3, but we are not doing a direct solve, we are doing an iterative solve, we 

are going iteration by iteration. At most, it requires 𝑛 steps. At most, it requires 𝑛 steps, and why 

𝑛2 computations? My 𝐾 is sparse, lower triangular. 

Oh, computing that, yeah, in that sense it is 𝑛2, but there, so I want to put a little bit of grain of 

salt over there. If I can multiply two vectors, let us say two 𝑛-length vectors, according to you, is 

that an 𝑛2 operation? It is an 𝑛-operation and there are 𝑛 of them, so 𝑛2. If it’s an 𝑛-operation, 

that means this multiplication of this, this, this, each of them is happening serially. 

That is how you’re saying 𝑛. But if I have vectorized code and a vectorized hardware that does 

it, it’s actually order 1. So that’s why this becomes into how properly is your algorithm 

recognizing the underlying hardware. And with distributed cores, multicores, multithread and all, 

it becomes very hard to make a definitive statement that this is definitely order 𝑛 or something. It 

can be lower. Conjugate direction method, there the trouble was computing 𝑝 itself because 

conjugate direction method either you did Gram-Schmidt or you did. 

You could parallelize it there, but every step that you could parallelize in conjugate direction 

method you could parallelize here in the conjugate gradient method. It is not the same because 

the amount of parallelization required over here is to bring 𝑛2 down to let us say 𝑛 that would 

bring 𝑛3 down to maybe 𝑛2log𝑛 or something. So, that gap will kind of remain there. Right, but 

at the end of the day, it boils down to actual implementation, how cleverly and how nicely it is 

done, right, which is why you will be surprised to know that a lot of very, very serious numerical 

linear algebra routines in the physics community are, for example, written in Fortran to this day, 



because it is one of the most efficient languages. Has anyone ever coded in Fortran? It is a 

beautiful language because it is so simple. 

It is like C but it does not have any of the memory allocation nightmare. It is just you have to 

write everything out explicitly. There is no high-level abstraction there and so it works blazingly 

fast. So, C and C++ at best they come as close to Fortran. 

They never beat it. So, that is kind of the gold standard, right? Very old-fashioned, but you look 

at the codes written, for example, in your high-energy physics, the Higgs boson discovery and all 

of that underlying it, you will find Fortran code. LIGO gravitational wave observations with high 

chance you will find Fortran code. Ok. So, sometimes old is gold. All of the new languages, I 

mean, the other end of the spectrum is python, right? It will take forever and ever. At most, I 

mean, if condition number is 1, 𝐴 is identity, we solve the problem 𝑥 = 𝑏. 

No, the reason for this is the first graph that I showed in the class. 

So, this is the situation. As I am increasing the condition number, say at most 𝑛 steps was like an 

ideal result, right, where we did not even mention condition number. In the real world, this is the 

situation. Which is almost never the case. Often, I mean, in many particularly like in ML 

applications, I do not want to drive the error down to 10−16, I will work with 10−4 or 10−5, and 

for that, if I can just improve the condition number a little bit, I spend fewer iterations in doing it, 

right? So, it is all a very, very you have to take a composite view of what are the resources at 

hand, what do you need to speed up and whatnot, right? You cannot win on every front; 

somewhere you have to give up, which is the other name for engineering, right? 

So, this is it as far as question. How do I know that the condition number of �̂� is less than that, 

right? So, the argument is a little bit roundabout if I did a perfect Cholesky decomposition, the 

condition number becomes 1. That you agree, we showed that, right? If it is equal to 1. So, now, 

I back off from perfect Cholesky decomposition to incomplete Cholesky decomposition. So, 

there the reasoning is that because it is incomplete, this product is not going to be identity, it is 

going to be something short of it. 

So, with a controllable threshold, which is an input argument to the Cholesky algorithm, you can 

sort of have a knob on the condition number. We are not proving it, but it is numerically found to 

be the case. So, that is the knob that I have. So, how much resources are you willing to spend in 

your incomplete Cholesky gives you that much better of a condition number, but if you spend 

too much on it, then it is not worth it. So, you can play around with this in ICHOL in MATLAB 

and see that as I increase the change the thresholds it takes more and more time, then at that point 

it is not worth it. 

So, you already have the CG code from the class from last time. So, you can see modifying it for 

this is a few lines, that is it, there is nothing much to it. So, when you are faced with applying CG 

to your research problem, right, it is going to be trivial. And then the next step, the next module 

that we look at, which is the nonlinear CG method. By the end of it, you will have modules ready 

for everything. For preconditioning, step length using backtracking and Wolfe conditions, 

everything put together. 

You will be able to tackle your first nonlinear problem with all the nuts and bolts already there. 

Okay, good. Any more questions? Why don’t we take any other diagonal matrix? Not diagonal 



matrix, orthogonal matrix. Orthogonal matrix, you mean orthogonal means all the columns are 

perpendicular to each other. You have to prove that that is actually improving the condition 

number otherwise I mean for example, if it is a rotation matrix. 

No use. It may just rotate the Eigen vectors. Eigen values will remain as it is. So, it may not help 

you, right? So, there are other cheaper tricks also. For example, there is a diagonal 

preconditioner. So, you just take the, I may be wrong, but I think if you just take the 𝐴 matrix, 

take the diagonal elements and invert them and create a new, this thing over there. Correct, there 

are lots of tricks available depending on if you know something about the structure of 𝐴. This is 

very crucial. If I know something about the structure of 𝐴, I can leverage that information into 

getting a good preconditioner. 

So, in the market, you will find general-purpose preconditioners that do not care what 𝐴 is, and 

then there are these fine-tuned ones. For example, if 𝐴 is Toeplitz or this or that, then you have 

some more tricks that you can do, right? So, these two worlds are very closely intersecting: linear 

algebra and optimization. 


