
Course Name: Optimization Theory and Algorithms 

Professor Name: Dr. Uday K. Khankhoje 

Department Name: Electrical Engineering 

Institute Name: Indian Institute of Technology Madras 

Week - 07 

Lecture - 49 

 

Intro to Newton methods 

Okay. So then this allows us to move to the next part of set of methods in optimization. We have 

looked at first, these are all first order methods because we are only computing gradient at best, 

right? So the other big elephant in the optimization room is second order methods. So Newton 

and quasi-Newton methods. So that is what we are going to look at next. Okay. 

So those of you reading the book, this is roughly chapters three, six, and seven of Nocedal and 

Wright. We’ve already discussed the Newton direction when we started with line search 

methods, right? So everyone kind of knows the motivation. So what was the motivation to go 

towards Newton methods? Rate of convergence was quadratic, right? Not linear. Rate of 

convergence was quadratic. 

Okay. And there is no free lunch. What is the price? Compute Hessians, right? Why is it 

expensive to compute a Hessian? Because I have to find the gradient of gradient in some sense. 

So if I take, for example, let’s take function 𝑓(𝑥, 𝑦). So if I do ∇𝑓, what all is there in ∇𝑓? What 

is the expression for ∇𝑓? 
∂𝑓

∂𝑥
, 
∂𝑓

∂𝑦
. 

 

Let us say I was evaluating this by finite differences. Finite difference is simply 𝑓(𝑥 + ℎ, 𝑦) −
𝑓(𝑥, 𝑦) divided by ℎ. So how many function evaluations did I need over here to calculate ∇𝑓? 



Two. At least three, no? Because there is 𝑓(𝑥 + ℎ, 𝑦), there is 𝑓(𝑥 + ℎ, 𝑦), 𝑓(𝑥, 𝑦 + ℎ), and 

𝑓(𝑥, 𝑦). So I need at least three function evaluations. 

If I am doing, this is what is called a one-sided difference. There is also a two-sided difference or 

a central difference. How do I write a central difference? This is one-sided. 𝑓(𝑥 + ℎ, 𝑦) −
𝑓(𝑥 − ℎ, 𝑦) divided by 2ℎ. Here how many function evaluations would I need? Four function 

evaluations to get the gradient because there is no common point now, right. 

It is 𝑥 + ℎ, 𝑥 − ℎ, 𝑦 + ℎ, 𝑦 − ℎ. What is the advantage of a two-sided? It is much more accurate, 

right. Numerically you can prove this is actually. If you take the Taylor series expansion of 

𝑓(𝑥 + ℎ), what is the order of the error? So 𝑓(𝑥), let’s do this. So error, if I write 𝑓(𝑥 + ℎ), the 

Taylor series of this, this is going to be 𝑓(𝑥, 𝑦) + ℎ
∂𝑓

∂𝑥
(𝑥, 𝑦) + 𝑂(ℎ2). 

 

So when I take this guy to the left-hand side, my error is 𝑂(ℎ2). On the other hand if I take this 

guy and you write the Taylor series expansion for 𝑓(𝑥 + ℎ) and 𝑓(𝑥 − ℎ). What will happen to 

the quadratic terms? They cancel out exactly because ℎ2, ℎ2 has the same sign and subtracting 

the two. So what will be the order of error? ℎ3. This has order ℎ3 error. Simple Taylor series or 

Taylor expansion. 

So that is why the two-sided difference is much more accurate because the error is now going as 

order ℎ3. All there is a price to be paid. The price is I need four function evaluations instead of 

three function evaluations. So this was just to calculate ∇𝑓. Now what is the Hessian of 𝑓? 𝑓𝑥𝑥, 

𝑓𝑥𝑦, 𝑓𝑦𝑥, 𝑓𝑦𝑦. 



So what is 𝑓𝑥𝑥? What do I mean by 𝑓𝑥𝑥? 
∂2𝑓

∂𝑥2
. And this is going to be 

∂2𝑓

∂𝑥 ∂𝑦
. So each of these, I 

mean this I can write as this, 
∂

∂𝑥
, 
∂𝑓

∂𝑦
. So I need many more function evaluations than just 3 for 

each of these terms. Because I am going to get this is going to be a finite difference in 𝑦. 

And together this whole thing is going to be FD in 𝑥. This is all just to get one guy. Similarly, I 

have to repeat it for 𝑓𝑥𝑥, 𝑓𝑦𝑦. So it’s easy enough to calculate how many function evaluations you 

will need over here. So that is the price that you’re paying. 

And this is a simple toy illustration of 2D. Real-life problems will have, let’s say, a few 10,000 

or a few lakh or a million dimensions of 𝑓. Good luck, right? You don’t find the use of Newton 

methods much in the machine learning or data science, big data applications for this reason. 

Okay. All right. Okay. So let’s do a bit of revision of this. What are the requirements of using or 

doing a Newton search method? Okay. Is the Newton method a line search method? It is a line 

search method, right. So it is a line search method which is great because we have already 

studied one type of line search method which was gradient descent, right. 

So this is going to be simply 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘. We already have a recipe for calculating 𝛼 

which is inexact line search. So 𝛼𝑘 can come from inexact line search. What was the Newton 

direction equal to? Does anyone recall? There was a negative Hessian inverse multiplied by ∇𝑓𝑘. 

So this is the Newton direction and just to contrast it, this is my steepest descent was −∇𝑓𝑘. 

But this was not all, right? It was not, it is not enough to just write this over here. There was one 

further requirement on the Hessian. 

 

The Hessian needed to be positive definite, right? So do you recall why that is, how can we 

derive that this is necessary? How did we do it? We needed to show that it leads to a legitimate 



descent direction. For that what was the expression? I needed to look at the cosine of the angle 

between these guys. So between −∇𝑓𝑘 and my 𝑝𝑘, this angle 𝜃𝑘. So, cosine 𝜃 between these two 

vectors would simply be 

 

cos(𝜃𝑘) =
−∇𝑓𝑘

𝑇𝑝𝑘
∥ ∇𝑓𝑘 ∥∥ 𝑝𝑘 ∥

 

No problem with the denominator because that is always positive. 

Over here, if I substitute the numerator, 𝑝𝑘 is coming from here, the Newton expression. This 

became ∇𝑓𝑘
𝑇. And this needed to be, cosine of this needed to be what? Greater than 0, less than 0. 

Greater than 0. So this has to be like this. 

So therefore this expression has to be positive. So you can see therefore that if the inverse 

Hessian is positive definite, then 𝑝𝑘
𝑛 is a legitimate descent direction. This is a stronger 

requirement. Why is it a slightly stronger requirement but a very practical requirement? Because 

when I say positive definite, what am I saying? If the matrix 𝐴 is positive definite, I am saying 

that 𝑧𝑇𝐴𝑧 > 0 for all 𝑧. 



 

For all 𝑧. Here what do I need? I am always only going to multiply it by ∇𝑓𝑇, right? So it is a 

little bit of a weaker thing that I require for making sure the Newton direction is a legitimate 

descent direction. But in practice, there is no way for me to know what set of values this ∇𝑓 is 

going to take. So since there is no way for me to practically ensure that I will just say let it be a 

positive definite matrix. The consequence of this is that in practice when you implement the 

Newton method, it may happen that your matrix is not positive definite. 

But this product is positive. So you can see what has happened over there. There are some 

vectors for which this product is positive. You just got lucky. And ideally, when we are solving 

research problems, we do not want to rely on luck any more than necessary, right? So that’s why 

this is standard requirement, okay? Now you will find that in many places it is not written that 

the inverse of the Hessian is positive definite. Instead, it is written that the Hessian is positive 

definite. 



 

Are these two the same things? Because what is the simple linear algebra concept that tells us 

that it is the same thing? The eigenvalue decomposition, right? So if I write this as 𝑄𝛬𝑄𝑇, right. 

These are orthogonal vectors 𝑄 and what is going to be this inverse? It is going to be the same 𝑄 

is going to come here, this is going to get inverted, 𝑄𝑇. These are greater than 0 diagonal values, 

these are also therefore greater than 0 diagonal values, right. So, again linear algebra over here. 

So I have mentioned Newton and Newton-like methods. 

Okay. So now we will just, I will just introduce a little bit more of terminology. So what you will 

find in most of the literature is that this 𝑝𝑘 is written in the following way. Instead of writing the 

Hessian explicitly, it is written as the term given for it is. If this 𝐵𝑘 is equal to the Hessian, we 

say of course it is a Newton method. If 𝐵𝑘 is an approximation of the Hessian, it is called a 

Newton-like method. Or the more precise word would be quasi-Newton. 

Okay. So you will find the same word, the same term 𝐵𝑘 being used throughout the discussion 

that will follow in the subsequent lectures. Which means that I can switch between Newton and 

quasi-Newton depending on how I compute my 𝐵𝑘. Okay. And the whole point of a quasi-

Newton method is that I want to approximate the Hessian. Means I do not want to calculate it 

because we have seen what is the cost involved. 

I want to approximate this Hessian. And this quasi-Newton method gives us again there are 

several cousins of quasi-Newton methods. Different tricks to estimate the Hessian. Not calculate 

the Hessian but estimate the Hessian. So this gives rise to like we had a family of non-linear CG 

methods. We have a family of quasi-Newton methods, okay. 

Which since they do not directly require calculating the Hessian, they are very, very competitive 

with your preconditioned CG, nonlinear CG, all of that, okay. So that is about it I think that we 

want to talk about. In terms of introducing, it is more like a revision of what you already knew 

for the requirements for CG and, sorry, for the Newton methods and the quasi-Newton methods, 



okay. We will have to ensure that this approximation is also positive definite. Otherwise it will 

not be a descent direction, okay. 

So next week we will look at further analysis of the Newton method, okay. For a lot of 

engineering problems which are not high in dimension, Newton methods are very, very 

competitive because of the much faster rate of convergence. 


