
Course Name: Optimization Theory and Algorithms 

Professor Name: Dr. Uday K. Khankhoje 

Department Name: Electrical Engineering 

Institute Name: Indian Institute of Technology Madras 

Week - 07 

Lecture - 51 

 

Checks for positive definite matrices 

So as far as the Newton method goes, there is, it’s pretty straightforward. You get the, so if you 

were to summarize the Newton method, what would you do? You have, let’s just summarize the 

Newton method. So supposing you were writing an algorithm for Newton method, what would 

you do as step one? How do you start? How do you start? pick a starting point. This could be 

randomly generated or it could be from some intuition about the problem ok. So, next what do 

we do? I need to know in which direction to walk. Therefore, I need my 𝑝𝑘, 𝑝𝑘 is going to be 

equal to 

 

𝑝𝑘 = −𝐵𝑘
−1∇𝑓𝑘 

I need to compute this may be expensive, but if I am doing Newton method means I am 

computing this. So, I got my vector. So, this was my direction. What do I do next? One answer is 

find out 𝛼. 

Is there a more precise answer or let me put it differently, are not you forgetting something? Not 

exact line search, exact line search may not be possible. In exact, before you get on to the bus 

you need to buy the ticket, what is the ticket? Check if it is a descent direction, in other words 

how do I check if it is a descent direction? Is it positive definite? If 𝐵𝑘, if 𝐵𝑘 is not positive 

definite, 𝑝𝑘 is not going to be descent direction right. So, then check 𝐵𝑘 for PD and actually first 



you check for this and then you compute this, otherwise it is a waste of time. So, I got my 

positive definite check, supposing it is done. Next what do I do? 𝛼. 

So, I should not say pick, I say compute. Most popular way of computing 𝛼 is for example 

backtracking line search. It is an example of inexact line search, right. So, I got this. What do I 

do next? I have 𝛼, I have 𝑝. 

Good. What do I do? Go to 𝑥𝑘+1, right. and I can keep doing this. What do I need to check to 

stop my iterations? How do I know whether I am done? Well, the simplest thing to do is we 

check this right, that is my signature. You could check ∥ 𝑥𝑘 − 𝑥𝑘+1 ∥. 

That will, that is not exactly the signature. That is telling you, supposing you enter some very 

shallow valley, then it may end prematurely. You need to check this and if it is good, you end. If 

it is not good, which step do you go to? Step 2, correct? So, end is one option. Step 2 is another 

option. 

So, everyone has a very clear picture of Newton method. In terms of coding, supposing I give 

you like 10 minutes to code this, you have already seen the code for steepest descent, you have 

seen it for conjugate gradient. Do you think this is less difficult or more difficult? It is about the 

same difficulty. There are no new steps over here. The only thing different is how you calculate 

𝑝𝑘. 

You have to do, you have to spend some, do something clever to calculate 𝐵𝑘, right. Most likely 

if you do not know the function analytically, you cannot calculate 𝐵𝑘 analytically, in which case 

what would you do? Finite differences, ok. Everyone remembers finite differences, how do I 

calculate second derivative of a function? Taking differences, right. So, that is how you do it. So, 

what do you think is the weakest link in this? You know, when you have a relay race, you need 

to identify who is the weakest runner, right? Because that determines your outcome. 

So who is the weakest runner in this? Step two, right? This guy. Because I only wrote one, I 

wrote an incomplete if condition. I wrote if 𝐵𝑘 is positive definite, then do this. If it is not, what 

do I do? This is the next topic that we want to talk about. If 𝐵𝑘 is not positive definite, then what 

do I do? Based on what you already have learned so far, if you are writing this code, what would 

you do? The most common sense thing to do, I should not say common sense, I would say the 

one of the easiest solution is to ditch the Newton method and switch to something you already 

know which is steepest descent or steepest non-linear CG as depending on what the function is. 

I could just switch into that because there I do not need to check whether it is positive definite or 

not. If I take −∇𝑓, it is always going to be a descent direction. So I could do that and after a few 

steps I could switch back into Newton method, right. So people do that. So they will have a code 

that switches between this. 

A disadvantage of course is, what would be the disadvantage of doing this? You will lose the 

quadratic rate of convergence, but in this case you have no, it seems like you have no choice. So, 

one possibility is drop down into steepest descent or CG or non-linear CG ok, depending on the 

problem this is. Now turns out there is another, there is entire you know family of tricks that 

people do. So, the book has a long discussion of different, different tricks to do. So, what I am 

going to do is I am going to write down tell you about one of them ok and one of them is Hessian 

modification ok. So, this is if you think in terms of surgery Step one is like non-invasive surgery. 



Step two is like invasive surgery. We’re gonna cut open the patient and do something a little bit 

nasty, okay. Now as the word says Hessian modification means I want to modify it so that what 

happens, so that it becomes positive definite. On the other hand I do not want to modify it in 

such a way that I am now solving a different problem altogether, right. So I want to introduce 

some small changes to the Hessian so that I can do this Newton method, ok. 

 

So there are some tricks by which of all you can figure out, how do you know before we get to 

Hessian modification, I forgot to answer one, I mean you should have asked me, how do I check 

whether or not a matrix is positive definite? Ok, so before, so how to check if 𝐵𝑘 is, we should 

have actually done this before the recipe for what to do after the check fails. okay. So one is 

eigenvalues. Does that look like a good idea? It is an expensive idea. It is because eigenvalue 

decomposition, remember I need to calculate all the eigenvalues. 

It is not enough for me to just calculate one or two eigenvalues. I have to calculate all of them 

and what property should all of them satisfy? Should be strictly greater than 0, right. So there is 

no inexpensive eigenvalue decomposition over here. I am stuck. Eigenvalue decomposition, 

order 𝑛3, 𝑛3, if 𝑛 is a large problem, this is infeasible, right. 

I mean, what else can I do? 𝑥𝑇𝐵𝑘𝑥. I should check whether this is greater than or equal to 0. But 

what was the remaining part of the statement? Good luck with that. So, here is where again linear 

algebra comes to our help and you had seen this technique last time, this is we make use of this 

Cholesky decomposition, ok. So, what does the Cholesky decomposition say? That if 𝐴 is 

positive definite, then it can be written as 𝐿𝐿𝑇 or 𝐶𝐶𝑇, whatever notation you want. 

Where 𝐿 was what? Lower triangular, right. 𝐿 is lower triangular, ok. It is not, there is actually 

one more condition on it, it is lower triangular and the diagonals are positive, there is one more 

condition. And this Cholesky decomposition theorem actually goes both ways, says if 𝐴 is 

positive definite, then I can write it as 𝐿𝐿𝑇 and the other way is that if 𝐴 can be written as 𝐿𝐿𝑇 



where 𝐿 has this property, that means 𝐴 is positive definite. Both ways it works, right. So, if 𝐴 =
𝐿𝐿𝑇, then 𝐴 is positive definite, right. So, option B for checking whether or not 𝐵𝑘 is positive 

definite is simply attempt a Cholesky decomposition of your matrix 𝐵𝑘. If you succeed, then you 

can conclude that your matrix is positive definite, ok. 

Now that is again, the computational cost of doing a full Cholesky decomposition is non-trivial, 

right. So, this is again not one of the, not a very nice solution to try, ok. So, now with this in 

mind, there is going to be a third method that I will talk about now. This is expensive, I mean 

sorry this is expensive. The third method is actually one of the most inexpensive and elegant 

methods which I have come across. 

In fact, this method is not mentioned in the book. So, I am going to spend some time over here 

talking about it in detail, ok. Not surprisingly it is named after some Russian. So, it is called the 

Gershgorin. Anyone has heard of this? One person. Nobody else? Okay, you have heard of it, 

right. 

So this, those of you who have done linear algebra may have heard of this theorem, okay. Again, 

most of the tricks of optimization come from linear algebra, right. So this is one of those things. 

And it is, so let me just tell you what this theorem states, okay. So, assume 𝐴 is and it is a very 

general theorem. 

 

So, take a complex matrix, ok. Now we need to make disks represent this matrix as a collection 

of disks. So, disk 𝑖 and imagine you have to imagine the Argon plane, right. So, this is the real 

axis and this is the imaginary axis. Everyone is familiar with the complex plane over here: real 

and 𝑦 is the imaginary part. So, the center of the disk is 𝐴𝑖𝑖, that means the diagonal element of 

that row or column, whatever is the center. 



So, you look, this is a complex number. So, it will be somewhere in the complex plane, ok. What 

is the radius? I take this, this summation of, what is this in English? Is the row sum of absolute 

values of the 𝑖-th row. 𝑖 is fixed, 𝑗 is what I am iterating over, but what am I skipping? I am 

skipping the center point, right. 

So, I have got this. So, basically what you have is a disk whose center here is this, is 𝐴𝑖𝑖, and this 

radius is 𝑟𝑖. How computationally expensive do you think this is to evaluate all the disks? It is no 

cost, it is just adding numbers, right? There is no order 𝑛3 anything over here. And here is the 

lovely theorem. The theorem says that every eigenvalue of 𝐴 lies within at least one disk, it is 

really very, very powerful, right? Because it is not, it is exactly what we want in the sense that I 

do not want to know the exact eigenvalues, right? I am not going to do any particular calculation 

with the eigenvalue. I just need to be assured what? That they are positive. 

So this theorem is going to help me because it is telling me the bounding box or the bounding 

disk within which an eigenvalue is, right. So, let us sort of particularize it to our case. We are 

dealing with, let us say we are dealing with a real value problem, right. 

So, our matrix 𝐵𝑘 is real value. So, that implies that where are all of these centers of the disks? 

They are all on the real line. So, if I can draw one real line over here, this is 𝐴11, this is 𝐴12, 2, 

whatever, these are all the centers over here. Now, this row sum obviously without the centers is 

also a real number. So, what am I going to get? I am going to get these disks, right. So, once I 

compute all of these disks, what do I have to make sure? That there is no disk which is kind of 

creeping into the negative x-axis, right. 

If this happens, then there is a possibility that there is an eigenvalue here, but it is not a 

guarantee. It is saying that an eigenvalue is contained in this disk, right. So, this Gershgorin Disk 

Theorem is telling us, giving us a very clear picture without any computational cost. Look at 

these disks. If all of these disks lie to the right of the origin, then there is no chance that you will 

have a negative eigenvalue. 

If you do not have a negative eigenvalue, you are in business because then all eigenvalues are 

positive and your matrix is positive definite. Okay, so do I need to check every disk or should I 

check only the leftmost disk? The radius of the disks can be moved, right. So I can have a disk 

on the right with a larger radius, right. So I have to check that, okay. But this is like two lines of 

code to check it, right. 

So it is very easy to check all the disks, right. So now, so what are we sort of, let me just quickly 

summarize what we did is that the Newton method works if the 𝐵𝑘 is positive definite. So how 

do I check whether 𝐵𝑘 is positive definite? There are three ways, expensive to begin with, either 

do eigenvalue decomposition, expensive. Do Cholesky decomposition, also somewhat 

expensive. Third is look at the Gershgorin disks and make sure that all of them are to the right of 

the origin. 

So this tells us whether we are in business or not, right. Now if let us say some eigenvalues are 

negative, right. If eigenvalues are negative, we have two choices: either switch to steepest 

descent, conjugate gradient, whatever, or do a Hessian modification, right. So now let us have a 

look at Hessian modification. 


