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Linear least squares - Part 2 

Ok, once the gradient is done, what else do I need? Since we have previously studied Newton’s 

method, what would I also need? Look at the Hessian, why not? Right, it looks... does not look 

very difficult. Now, Hessian again, I have I am keeping 𝑗 for the way the index of summation. 

So, I am going to use 𝑖 and 𝑘 so that I do not get confused. This is the definition of the Hessian. 

So, my starting point again is this red expression over here, I have to take two derivatives, right, 

or I can take this guy and then do what? Take one derivative with respect to 𝑥𝑘, and then I will 

be done. Ok, so let us do that, that will be simpler. 

 

So, this is going to be equal to. So, two terms over here, let me underline it once again, this is 

what I am looking at. I need to take the derivative with respect to 𝑥𝑘. Ok, so this summation, the 

summation over 𝑗, will remain. Ok, so 

𝑑𝑟𝑗(𝑥)

𝑑𝑥𝑘

𝑑𝑟𝑗(𝑥)

𝑑𝑥𝑖
 

The first term is as it is and then the second term becomes 𝑟𝑗(𝑥). The first term again looks like 

something that can be simplified. 



What does it remind? I mean, if you got the gradient, this should be just as easy. The first term 

on the Hessian, what should it, does it look like the product of two matrices? Yeah, what? The 

Jacobian, that is clear that they are the product of two Jacobian matrices. The only thing that we 

have to get right is whether the order, whether it is transpose or not, right. So, no, nothing very 

great over here. I am going to give you the final answer. 

 

This is simply 

𝐽𝑇(𝑥) × 𝐽(𝑥) 

Oops, this is the first term. The second term is just going to be, I am just going to write it like 

this. Ok, so 𝑟𝑗(𝑥) and the second term, what would you call it? This is the Hessian of 𝑟𝑗(𝑥), right. 

So, we have got our gradient, we have got our Hessian. 

Hessian surprisingly did not end up looking very, very complicated. You have two terms over 

here, right. So, here is where the literature of least squares problems kind of splits into two 

different approaches. Ok, and why it splits into two different approaches is simply because one is 

easier to do than the other. Why again? Because of the presence of a second order term over 

here. Ok. 

So, if I were to ask you if you look at the second, this second expression over here, the Hessian 

has two terms, one is the product of Jacobians, the second is a Hessian over here multiplied by 

this. If I wanted to ignore the blue term, ok, so there are two terms, this is engineering. So, we 

are trying to see under what situations can the second term be ignored, that is what I am asking. 

When can we ignore this blue term? There basically there seem to be two options. 

First option is what? What would you say? It is a product of two terms, either the first term is 

low or the second term is low, there is no other possibility, right. 𝑟𝑗(𝑥) is small, that is one 



possibility. If 𝑟𝑗(𝑥) is small, again in plain English, what would I say? I am somewhat near the 

solution. If I am near the solution, the residual is going to be low. So, if my... if I think of this as 

an iterative process and I am arriving close to my solution, 𝑟𝑗(𝑥) is going to be small. Does that 

mean that, does not necessarily say anything about the Jacobian, Jacobian is going to be 

whatever, right? 

 

So, 𝑟𝑗(𝑥) is small, this for example, when close to a solution. Ok, very good. Any other 

possibility? The second term, right. So, when does this happen? When will 
∂2𝑟

∂𝑥2
 be small? I mean 

you already know the answer, if you were to take a common sense guess, when is this second 

term going to be small in magnitude? What would you say? Supposing your model was linear, if 

your model was linear, then there is no second order term that is identically 0, that is the trivial 

case. But if it were sort of weakly linear, right? 

So, for example, if 𝑟(𝑥) is approximately affine or linear, then the second derivative of it is 

going to basically be either 0 or very close to 0, right. So, these are the two possibilities when we 

can ignore these terms. Ok, and when I ignore them, what do I get? I get that the Hessian simply 

becomes 

𝐽𝑇𝐽 

Ok, because the second term is gone, and this is what is called in the literature linear least 

squares. We will also talk about non-linear least squares when the second term cannot be 

ignored. Ok. 

As you can imagine, there is computationally more work involved in solving a non-linear least 

squares problem. So, before we go to non-linear least squares, we will spend now some time 

looking at linear least squares problems because they appear so often and we have already spent 



some part of the course looking at linear least squares problems. For example, when you solve 

𝐴𝑥 = 𝑏, 𝐴𝑥 = 𝑏, I wrote it as 

∥ 𝐴𝑥 − 𝑏 ∥ 

for example, that is a linear, the model is linear, and I am trying to minimize it. So, it is a least 

square minimization problem. 

So, I have already looked at it, but what I will do is I am going to put it into the language of that 

that we have just discussed so far. Ok. And we will see, we will look at for example, this 

minimum norm solution which I mentioned or how to use the SVD, when can we truncate the 

SVD, all of these tricks which are found all over numerical analysis, we will have a look at it 

now. Ok, in the context of linear least squares problems. So, let us look at this now. So, this is an 

affine function which implies that 𝑟(𝑥) is simply something like this 

 

𝑟(𝑥) = 𝑥 − 𝑏 

This is as general a linear expression as I can find, right. So, my objective function I had said 

was 

1

2
∥ 𝑅(𝑥) ∥2 

right. 

So, that will continue over here. So, this is just going to be a good kind of a revision for all of 

you because you are very familiar with all of this now, right. If I take ∇𝑓, I do not need to 

remember anything of what I did just now. If you look at this expression and calculate ∇𝑓, what 

will you write? Using what we did in the very beginning of the course, right, taking the gradient 



of something like this, what should you get? Multivariate chain rule 𝐴𝑇 multiplied by you should 

not forget this. This is how we had from first principles if you remember when we tried to take 

the derivative, we had done it for the gradient, we had done it for the Hessian, this is ∇𝑓, right. 

This expression will come so many times, it is useful for you to just sort of keep it in your 

memory because you know whether you are going to do ML or whatever, this expression will 

come again and again. Again, it is useful to remember this. 

 

Now, 𝐴𝑥 − 𝑏 is also my residual. So, I can write this as 

𝐴𝑇𝑟(𝑥) 

Ok, and if I look at the language of least squares over here, where did it go? Here you go. In a 

linear least squares problem, this was 𝐽𝑇𝑟, not surprisingly, here I have 𝐴𝑇𝑟. So, it implies simply 

that the Jacobian is the same as 𝐴. 

I am trying to take my well-known linear 𝐴𝑥 − 𝑏 problem and fit it into the least squares 

language. Ok, and that is fine, and then the second term is 

∂2𝑓

∂𝑥2
 

What will it be? There is 𝑟, which is only linear, so the second derivative of 𝑟 is going to give me 

0, right? So, this is 𝐽𝑇𝐽, or in other words, 𝐴𝑇𝐴. This is what I get, ok. Now, supposing I wanted 

to do, for example, the Newton method or something like that over here, right. 

So, for that, what is the requirement on the Hessian? Positive definite, right? So, Hessian must be 

positive definite. Hessian must be... is this expression positive definite? I see, I hear one, I hear 

several yeses, anyone disagree? If 𝐴 is invertible, ok, I tell you that. Ok, so for invertible, that 

means what should the size of 𝐴 be? Square. 𝐴 has to be square if I say invertible, but I said from 



the common-sense point of view I want more measurements than parameters. That means 𝐴 is 

tall, fat, or square? Tall. So, 𝐴 is definitely not going to be invertible. 

So, 𝐴 is not invertible. Let us take, is this Hessian positive or...? This, I hope someone will 

disagree. There is... That is important. It is not a given, right? So, only when 𝐴 is full column 

rank will this expression be positive definite. Why? So, let us see for positive definite, what is 

the definition? Anytime you have positive definite, what do you need to do? Just pick a 𝑧, 𝑧𝑇 on 

both sides, right? 

So, if it is positive definite, 𝑧𝑇𝐴𝑇𝐴𝑧 should be strictly greater than 0. And what is the important 

qualifier? For all 𝑧? For all 𝑧? Let us make it even more precise. There is one more thing. 

 

Not equal to 0. This is the precise statement. Now, this becomes 

𝑧𝑇𝐴𝑇𝐴𝑧 > 0 

And this becomes 

∥ 𝐴𝑧 ∥2> 0 

Now, if 𝐴 does not have full column rank, for example, if the columns of 𝐴 are linearly 

dependent, then there will exist a non-trivial 𝑧 for which 𝐴 × 𝑧 = 0, and so it will be positive 

semi-definite. 

So, this expression is always positive semi-definite; it is not positive definite. On the other hand, 

if the columns of 𝐴 are linearly independent, right, so remember when I am talking, when I say 

this, I am looking at these. These are the columns, and I have a 𝑧1 up to 𝑧𝑛 over here. So, 𝐴 × 𝑧 

is also a linear combination of the columns of 𝐴; that is one picture of 𝐴 × 𝑧. 



If the columns of 𝐴 are linearly independent, that means there is no linear combination of this 

which is going to give me 0 because they are linearly independent, right? So, that is why 𝐴 

should have... You can say the columns are linearly independent, or a shorter way of saying it is 

full column rank, right. So, 𝐴 must have full column rank. Correct. So, that is a good point. 

So, this... So, yeah. So, Ruban has asked a good question. It depends on how you chose the data 

points. If you had a bad strategy, you could have essentially duplicated duplicate points, for 

example, or you may still have full column rank, but the condition number may be bad; we will 

come to that analysis later, right. So, choice of data points is important. 

I mean, and this issue is there all throughout numerical analysis. For example, have you heard of 

this Runge phenomenon? You take an evenly spaced number of points and you try to fit a 

polynomial. As a simple level of experiment, right, take some function 𝑓(𝑥) defined from, say, 0 

to 1, and take uniformly spaced points and try to fit a polynomial. Start with linear, quadratic, 

cubic, and so on. As you start increasing the number of points, what happens? If you... This is a 

well-known thing; there is a nice Wikipedia page also about it. 

As you increase the number of points, the function approximation that you get, it goes through 

the data points very nicely, but in between those data points, you have a huge fluctuation that 

happens, right? And that is because you chose those points uniformly. On the other hand, if you 

choose the points non-uniformly, this oscillating behavior goes away completely. Ok. So, and 

those non-uniform points, often there is, if you study numerical analysis, what are they called? 

Anyone has an idea? Wants to take a guess? Chebyshev points, for example, they are called 

Chebyshev points, different from uniformly spaced points. 

So, there is a lot of deep analysis that goes into how to choose your measurement points. It seems 

naively just take uniformly spaced points; it is often not such a good strategy. So, all of that will 

come into the numerical properties of 𝐴. Ok, and we will come to that a little bit further down the 

line, but 𝐴 must have full column rank for it to be positive. Assuming this is the case, is 𝑓 a 

convex function? The Hessian is positive definite; is 𝑓 clearly, you can see it is a convex 

function, right? 

So, 𝑓 is a convex function, ok. Therefore, if we find some point 𝑥∗ such that ∇𝑓(𝑥∗) = 0, are we 

done? Then we are done, ok. So, what is the equation that I need to solve now to finish this 

problem? ∇𝑓 = 0. ∇𝑓 you already had an expression; where was it? ∇𝑓 was here: 

∇𝑓 = 𝐴𝑇(𝐴𝑥 − 𝑏) 

Right, so ∇𝑓 = 𝐴𝑇(𝐴𝑥 − 𝑏), and this basically becomes... We have seen this kind of equation 

before, and we have made one comment about this guy, saying that this has a bad condition 

number because there is an 𝐴𝑇𝐴. If 𝐴 has condition number 𝜅, 𝐴𝑇𝐴 has condition number 𝜅2, ok. 

These equations are also called the normal equations. Do not ask me why they are called that, I 

do not know what is normal about them, but they are called normal equations, ok. 


