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Constrained Optimization 

Alright, so we are going to move to the next part of this course, the final leg of this course, which 

is a very important part: constrained optimization. So, for those of you following the book, this is 

roughly Chapter 12 of Nocedal Wright. Now, in talking about constrained optimization, I am 

going to take some extremely simple examples and they are going to be two-dimensional, and 

the advantage of doing that is that we can do some geometry. When we can visualize what is 

going on, then we will be able to apply it to, you know, more difficult problems. 

So, let us start with something very simple. Let us say my objective function is 𝑓(𝑥) = 𝑥1 + 𝑥2. 

Now, you will see that there are some very subtle differences between constrained and 

unconstrained optimization problems, which make no sense unconstrained, suddenly will begin 

to make sense in a constrained setting. 

For example, if I give you a cost function like this, 𝑓(𝑥) = 𝑥1 + 𝑥2, and I said minimize this, 

what would you say? That is crazy, right? Because it makes no sense to optimize something that 

is going down to minus infinity. However, in the constrained world, this may make sense. So, let 

us have a look at that, how. 

 

So, let us call this C O, ok. 



So, in the unconstrained (U) is unconstrained optimization, right? So, the simply the way we 

wrote it was. This is how the notation for the problem is, right? Unconstrained optimization I 

write it like this. In the constrained optimization world, I have to obviously introduce some 

constraints for you, right? So, let us introduce two constraints. So, I am going to say, I am going 

to give you two constraints, and for variety, what we will do is one constraint will be equality, 

and one constraint will be inequality. 

Let us see what happens. So, 

𝑥1
2 + 𝑥2

2 − 2 = 0. 

This is a constraint. Geometrically, what kind of a constraint is this? A circle, right? 𝑥1𝑥2 must 

live on the circle. Let me make matters more interesting and give you one more constraint: 

𝑥1 + 𝑥2 ≥ −4. 

This is what kind of a constraint? So, very roughly speaking, I have an equality constraint, and I 

have an inequality constraint. So, how do I write this now? So, I could write this as one way of 

writing it is 

min𝑓(𝑥), subject to constraints. 

So, many people will write it as S.T., which simply means "subject to," and your constraints 

come in basically two flavors: those two flavors—unlike Baskin Robbins—there are only two 

flavors here: equality and inequality. There is nothing else that you can really think of. So, 

 

𝐶𝑖(𝑥) = 0,  𝑖 ∈ 𝐸 (equalities) and 𝐶𝑖(𝑥) ≥ 0,  𝑖 ∈ 𝐼 (inequalities). 



So, this is how your unconstrained optimization was a simple problem statement like this. 

Constrained optimization now, I have to write this whole thing, this is my problem statement 

over here. 

Is the notation clear to everyone? 𝐶𝑖(𝑥) = 0 for 𝑖 ∈ 𝐸 for example, could be 1, 2, 3, that means 

𝐶1, 𝐶2, 𝐶3 are equalities, and 𝐶𝑖(𝑥) ≥ 0 for 𝑖 ∈ 𝐼, where 𝐼 could be 4, 5, 6, and so on. So, 

𝐶4, 𝐶5, 𝐶6 are inequalities. This is a simple way of just defining the problem. 

Now, one thing I want to caution you against, which is a cause of a lot of confusion when you go 

from book A to book B to paper C. Every author seems to have a different convention of what an 

inequality is. So, half the literature will have 𝐶𝑖(𝑥) ≥ 0, the other half has 𝐶𝑖(𝑥) ≤ 0. So, 

everything will be off by a minus sign when you are trying to make sense of it. In the book that 

we are following and the notes that we are going to do, we are going to assume this form: 

𝐶𝑖(𝑥) ≥ 0. 

So, keep this in mind when you are reading the literature. If you go back to the very beginning of 

the problem definition, make sure which way their inequalities are going because otherwise, you 

will be off by a minus sign everywhere. 

So, let us just make one note over here: convention. So, having written this, this looks like a 

very, like a clunky big way of writing a problem statement. We want to have a little bit more 

compact way of writing it. So, the equalities and inequalities together, they define a very 

common-sense word. They define a feasible set. 

 

Means those, it defines those sets of 𝑥 which are legal, right? That’s also called feasible. So, the 

feasible set, the usual notation is 𝛺, right? It will simply be like this: 

𝑥 such that 𝐶𝑖(𝑥) = 0,  𝑖 ∈ 𝐸 and 𝐶𝑖(𝑥) ≥ 0,  𝑖 ∈ 𝐼. 



So this is your feasible set. Is it clear what I mean by feasible set? All those sets of 𝑥 which 

satisfy the equalities and inequalities? 

Having done this, the optimization problem simply becomes, so constrained optimization simply 

becomes: 

min
𝑥∈𝛺

𝑓(𝑥). 

So, it is a compact way of just defining the problem. Earlier I just wrote 𝑥 under the 

minimization. Now I am saying 𝑥 belongs to a feasible set. This is the more common notation 

that you will find in research papers. 

 

Everyone with me so far? So far we have just defined equalities and inequalities. 

So, let us just now that we have done this, let us look at this constraint a little bit. These couple 

of constraints that we have got, let us sketch them. The first constraint is an equality constraint 

𝐶1(𝑥) = 0, which we said is the locus of a circle centered at the origin, radius √2. So, I have this 

is my circle. So, what is this point for example? (√2, 0), right? (−√2, 0), this is (0,−√2), 

alright. 

So, this is my 𝐶1(𝑥). Where is my 𝐶2(𝑥)? What is the slope of this line 𝐶2(𝑥)? −45∘. What is 

the intercept? −4, right? So, it is in the bottom left, it is like this. Right. So, this is my (0, −4), 
and this point over here is my (−4,0), okay. 

Very good. Now, what is this feasible set now? Is the entire circle, the entire circle is legal 

because it is, you know, it is quite obvious that this full region, the dashed green region, satisfies 

𝐶2(𝑥), and this circle itself satisfies both 𝐶2(𝑥) and 𝐶1(𝑥). So, if someone says, "What is the 



feasible region, or rather, the feasible set for this problem?" It is the circle, not the green region. 

The circle is the feasible set. 

Now, on this feasible set, does it make sense for me to ask this question: Optimize 𝑓(𝑥) = 𝑥1 +
𝑥2? It makes sense because the answer need not be minus infinity, right? So, even such a simple 

problem like this, the moment I start adding constraints into it, they will begin to have some 

solutions, which in the unconstrained world, this simply did not make sense. 

Alright, so that is just a little bit of intuition over here. In terms of notation, I have told you what 

the equality and inequality constraints are. There is one more definition that gets used a lot in 

describing constrained optimization: it is called the active set. 

So, the way we define the active set is very simple: it is those equalities, which are automatic, 

and all equalities are included in the active set. Those inequalities which are, what, when I say, 

"What let us?" We can arrive at this just by common sense. If I say an inequality is active, what 

is the first thing that comes to your mind? We are talking plain English here. An inequality is 

active, so let us go back to our example over here. So, in this one, which is the inequality? 𝐶1 or 

𝐶2? 𝐶2 is the inequality. 

Supposing I am standing at this point, would you say the inequality is active? If I was standing at 

this point over here, would you say the inequality is active? Okay, so maybe it is not that 

intuitive. The meaning of active is that the inequality becomes an equality; remember, there is a 

"greater than or equal to," so those points where it becomes equal to 0 are where the inequality is 

said to be active. 

So, this character, this point over here, is where the inequality is active. That’s all, okay? So this 

is the definition of the active set. Could have used some other words also. So, inequalities are 

always active because they are always enforced. 

It is an equality, so you have to satisfy it. The union with those inequalities, which are, quote-

unquote, "active." So, 𝑖 belongs to the inequality set, which means 𝐶𝑖(𝑥) ≥ 0, but for those 

points—so remember that this over here, the active set definition—does it depend on 𝑥? It 

depends very much on 𝑥; it is a question being asked at a particular point 𝑥. At this point, which 

is the set of inequalities which are active? Active, in some sense, in plain English, means it is 

making a difference, right? 

If you look at—okay, let us just quickly draw this once more. 

This was my 𝐶1, okay, and this is my 𝐶2, and another case is this is my 𝐶1, this is my 𝐶3, okay. 

Let us call this point 𝑃, this point 𝑄, okay, so my 𝐶1(𝑥) = 0 is my equality constraint. 𝐶2(𝑥) ≥ 0 

is my second inequality over here. Once again, I have 𝐶1(𝑥) = 0 and I have 𝐶3(𝑥) ≥ 0. 

Okay, so if I were standing at a point 𝑅 over here, is 𝑅 even a point in the feasible set? It is not a 

point in the feasible set. So, I should not even be asking a question. Supposing I were standing 

over here, at this point over here, all I can say is that the inequality is active. The inequality is 

active because 𝐶2(𝑥) = 0 holds true at this point. 

So, the inequality is active over here. If I was standing at this point on the circle, am I in the 

feasible set? I am in the feasible set. What is the active set at this point over here 𝑅′? Only 𝐶1(𝑥), 
because only the equality always has to be there, right? So, 𝐶1(𝑥) is there. So, the active set has 



the digit 1 inside it, okay. 𝐶2(𝑥) is strictly greater than 0 at this point. At this point, 𝐶2(𝑥) is 

greater than 0. It is not equal to 0, so therefore the inequality is not active. 

That is the meaning of the active set. 

Now, on the other hand, let us look at the second, the right-hand side example. My constraint is 

𝐶3(𝑥) ≥ 0, along with the previous one 𝐶1(𝑥) = 0. So, what is the feasible set now? The arc of 

the larger arc of the circle, right? So, this is the feasible set—not the full circle. If I ask, 

supposing I was, let us call this point 𝑄 over here, at the point 𝑄, what is the active set? 1, right? 

𝐶1(𝑥). 

Why? Because the equality is always there by definition, but inequality is not included in this 

because why? At the point 𝑄, what is the value of 𝐶3(𝑥)? 0 or greater than 0? Greater than 0. 

Therefore, it is not included in the active set. 

On the other hand, if I was standing at 𝑃 or 𝑄, 𝐶3(𝑥) takes on the value of 0, right? So, if I ask 

you, "What is the active set at 𝑃 or 𝑄?" You would say 1, 3: 1 for 𝐶1, 3 for 𝐶3, shorthand, okay. 

So, there are a lot of algorithms that make this distinction between active and inactive 

inequalities. The rough intuition is this. Supposing I am standing at point 𝑄. Now, remember the 

whole game in optimization, in continuous-valued optimization: if someone who has not taken 

any optimization were to ask you, "What is the essential tool that you use in optimization?" What 

would you say? Someone who has not taken optimization asks you, "What is the fundamental 

tool that you use in optimization?" Whether considered or unconstrained, what would you say? 

Something very simple. 

Anyone should be able to understand. I don’t want such a technical answer. Is it not saying 

simply calculus? Calculus is your tool. Why? Because you work with a gradient, you work with 

a Hessian. and you move according to that that is the fundamental tool right if someone was 

doing SVD what the fundamental tool is linear algebra SVD here calculus is what allows us to 

move from a good point to a better point right the train that takes us from a good to a better point 

is calculus. I am taking first order Taylor’s theorem, second order Taylor theorem, mean value 

theorem all of this is built on calculus right so at point 𝑄 I am sitting at point 𝑄, do I have to 

worry about 𝐶3𝑥 ≥ 0? Remember in calculus what is the, I use first order theorem, a Taylor’s 

theorem, I use second order Taylor’s theorem, what is the real distinction? I mean when can I use 

one and not the other? These are all theorems built for a small deviation about a point. 

They are not applicable globally. If I want to write it globally, I have to take many, many terms 

of the Taylor theorem. But if I am taking only first order Taylor theorem, it’s valid in a small 

neighborhood around the point. If I take second order Taylor theorem, it’s valid in a little bit 

bigger area. That’s the intuition behind first order, second order. Now, if I am standing at point 𝑄 

and I am going to do first order, for example, gradient descent. 

Second order, for example, Newton method. Those are the two things that I have used. If I am in 

a small neighborhood like this about 𝑄, do I care about 𝐶3? Right. So, in a small neighborhood 

about 𝐶3, I am never going to care about 𝑄. I am never going to get into trouble with 𝐶3. That is 

the motivation behind saying 𝐶3 is inactive. 



I need not worry about. On the other hand, if I am sitting at 𝑃 or 𝑄, I do not have that luxury. I 

have to make sure that 𝐶3𝑥 ≥ 0 is satisfied no matter what infinitesimal 𝛥𝑥 I move. So, that is 

why I say 𝐶3𝑥 is active. So that is why in an algorithm when I am deciding how to move from a 

good point to a better point I need to do some you know keep check of what is good what is bad 

and that checking is happening by defining this active set. So while it looks like just some 

definition it is actually very useful when it comes down to the level of algorithm okay. 

So this was about so far we have spoken about definitions, feasible set, active set these are the 

two new things that are sort of entered into the picture right. So now let us try to solve our first 

constraint optimization problem to make matters simple we will start with one constraint and 

even simpler which is simplest kind of constraint and equality constraint okay. What if 𝐶3𝑥 is 

yeah then in that case that inequality would never be active by definition because it is greater 

than equal to I mean it is greater strictly greater than 0. So, it would never be active. However, it 

is unusual to find such a specification because it is not very well defined. 

Right if it is 𝐶3 is greater than 0 supposing that is my constraint. Now how close I get to 𝐶3 

without actually hitting 𝐶3 is undefined I can get 10−10 away from it right. So, it causes a kind of 

a not a very well specified problem. So, what you will find in the literature is always greater than 

equal to kind of a problem. So, let us take our previous cost function simple 𝑥1 + 𝑥2 two 

dimensional 𝐶1𝑥 is equal to 𝑥1
2 + 𝑥2

2 − 2 = 0. 

 

So, I have an objective function and I have an equality constraint. Here is my 𝐶1 ok. So, I mean 

this is one of those problems that you can solve graphically if it is very simple to solve. What are 

the contours of constant cost function value? What would they look like? Remember for ok, let 

us do a quick revision. For a quadratic form with a positive definite matrix 𝐴, what were the 

contours of constant cost function ellipses? For this function, what are the contours of constant 

cost function? Parallel lines. 



Parallel lines. What are the slope of those parallel lines? −45∘. −45∘ right. So, if I draw lines 

like this, is that correct right? Which way is the cost function increasing? To the bottom left or 

top right right. So, 𝑓 is increasing this way right if I go like this. 

That is actually enough for us to solve the problem. What is the solution? Is there a solution to 

this problem? Yes. What is that point? The tangent to the circle at the in the third quadrant that is 

going to be the solution. So, I already know the solution to this problem without the constraint as 

I said earlier this problem makes no sense, but now it makes sense right ok. So, that is the reason 

behind choosing a simple problem like this that we know graphically what the solution is ok. So, 

let us still let us do some calculus over here to get intuition. 

Now let us try to write down a few things that we will use throughout right calculus is what is the 

tool that we are using. What is ∇𝑓 scalar vector matrix vector size 2 × 1 why because 
𝑑𝑓

𝑑𝑥1
,
𝑑𝑓

𝑑𝑥2
 

right. So, 
𝑑𝑓

𝑑𝑥1
,
𝑑𝑓

𝑑𝑥2
 what is its value? 𝑓(𝑥) = 𝑥1 + 𝑥2, derivative is what? What is ∇𝐶1? 2𝑥1, 2𝑥2. 

So let us see this first. Let us identify a few typical points on this graph that are interesting ok. 

So, I have taken a few points over here 𝐴, 𝐵, 𝐶, 𝐷 ok. 

I have taken these points over here. Let us denote ∇ by this color and ∇𝐶1 by this color ok. So, at 

all of these points, so ∇𝑓 is a constant, it is a constant vector. So, no matter which point I take on 

the feasible set, ∇𝑓 is always pointing in the same direction. So let us just draw that over here ok. 

Which way is ∇𝐶1 pointing? Inward, outward? Any relation to the circle? It is always radially 

outwards, you can check it right at any point if I take it, it is always pointing radially outwards. 

So, at this point, it is pointing out radially outwards at point 𝐴 which way is it pointing? Radially 

outwards backwards, right? It is pointing over here. Similarly, over here it is pointing here and 

over here it is pointing over here ok. So, at the solution, we know that the solution is out of 

𝐴, 𝐵, 𝐶, 𝐷 which is the solution point 𝐴 right at the solution which is point 𝐴. Is there any relation 

between ∇𝑓 and ∇𝐶1? They are opposite to each other in general. What can you say? They are 

parallel to each other right whether it is pointing in the same way or with a minus sign they are 

parallel to each other right. So, ∇𝑓 and ∇𝐶1 are parallel ok. So, I could also write ∇𝑓(𝑥∗) which 

is the solution as 𝜆 ⋅ ∇𝐶1(𝑥
∗). 

So, I we have not derived this, this is just based on observation, you will agree with me ok. What 

is the trouble with this way of identifying the solution 𝑥∗? Is there any other point also where this 

holds true? It also holds true at 𝐶 also, is true at point 𝐶 ok. So, that is a bit of a bummer because 

we did not get it directly ok. So, let us say that we are at a feasible point. Let us assume let us 

make one very simple assumption that no matter what algorithm I use I always stay in the 

feasible. Let us assume that it is not allowed for you to jump out into you know the no man’s 

land you are always on the feasible side. 

So, let us say that we are at a feasible point and I want to go to a better point, that is the game 

that we are trying to play right, that is how it would be pick a random point, get better ok. So, we 

are here we want to go to point ok. So, I am at let us say 𝑥 I want to go to 𝑥 + 𝑠 which is better. 

Now, better would mean what? Value of 𝑓(𝑥 + 𝑠) is less than 𝑓(𝑥) that is what is meant by 

better ok. Since I said that the game the rules of the game are that you have to stay on the 

feasible set right. 



What does that mean for 𝐶1(𝑥)? What does that mean for 𝐶1(𝑥 + 𝑠)? What are their values? 

They have to be 0 because they are I am only operating on feasible points this much is true ok. 

Now comes our favorite Taylor’s theorem right. Taylor’s theorem if I apply it to the function 

𝐶1(𝑥) can I do it? 𝐶1(𝑥) is some function right 𝑥1
2 + 𝑥2

2 − 2, it is a function I can apply Taylor’s 

theorem to it. So, 𝐶1(𝑥 + 𝑠), can you tell me what will it be if I apply Taylor’s theorem? 

Remember the rules of calculus which I just told you, I want to make a small shift. 

So, 𝑠 is a small number comparatively. So, what would I write 𝐶1(𝑥 + 𝑠) as? First term 𝐶1(𝑥), 
second term ∇𝐶1(𝑥)

𝑇𝑠. This is my first order Taylor’s theorem. Given the rules of the game that 

I am always going to a feasible point, what does this first order Taylor’s theorem imply? It is 

giving me some constraint on 𝑠. It is saying that ∇𝐶1(𝑥)
𝑇𝑠 = 0. 


