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Single equality constraint 

So, we are going to resume our attempt at constraint optimization from last time, ok. So, very 

very brief overview of what we had was, what is the terminology of constraint optimization? We 

had that the constrained was simply written as, right, this was our sorry unconstrained and 

constrained became. How did I write it? I said, I said 𝑥 belongs to a feasible set 𝛴. And how did I 

define this capital 𝛴? We said, we wrote it in terms of equalities and inequalities. So, this is our 

just the way we formulated. What did we call 𝛴 as? Feasible set. Having done this now we will 

start with our explanation of the simplest kind of problem to start with which was equality 

constraint. 

One equality and the rest is constraint ok. So, as before our objective function 𝑥1 + 𝑥2 and our 

constraint equality was simply what? The circumference of a circle. This was our constraint. 

That is what I had, yeah right. 

Now for this problem, it is good to draw a geometry for this. This is my 𝐶1(𝑥) = 0. What was 

we calculated ∇𝐶1(𝑥), what was that? 2𝑥1, 2𝑥1𝑥2. and geometrically this was what way? Always 

pointing radially outwards, right. So, take a few points like this. 

 



If I take 4 points over here, A, B, C, and D. So, this is the way ∇𝐶1 points and then I can also 

look at ∇𝑓(𝑥) and that turns out to be 
𝑑𝑓

𝑑𝑥1
,
𝑑𝑓

𝑑𝑥2
. This is a constant vector, so it is always pointing 

in the same direction, ok. Then the other thing is what are the contours of constant 𝑓(𝑥). So, this 

is very simple to see. 

What are the contours? Straight lines, parallel lines with a slope of −45∘ you can say. So, these 

are the contours of constant 𝑓(𝑥), ok. And which way is 𝑓(𝑥) increasing towards the top right or 

bottom left? It is increasing towards the top right. So, we know already looking at this diagram 

that the solution is going to be because that is the place where 𝑓(𝑥) is the minimum and yet I am 

on the constraint right. So, without solving this problem in any formal way I know that the 

solution is easy. 

So, this is a very simple problem I do not need any of the machinery of constraint optimization 

for this, but this will give me the geometric intuition to formulate how to solve this problem. So, 

what was the, what is the observation that we can make at the solution? So, at 𝐴 if you were to 

try to come up with some geometric relation between ∇𝑓 and ∇𝐶1 you can see that they are 

parallel to each other or anti-parallel. So, you could simply write it as ∇𝑓(𝑥∗) = 𝜆 ⋅ ∇𝐶1(𝑥
∗). 

right. This is, is this true at points 𝐵 and 𝐷? No, it is not true. But it is true at point 𝐶, ok. 

And that is in a way ok because when we did our unconstrained optimization, what was our 

condition for stationary point in unconstrained optimization? ∇𝑓(𝑥∗) = 0 and that was true at a 

maxima as well as a minima. So, nothing special over here. We are starting with the simplest. 

What kind of a condition would you call this? Could be a necessary condition. It is not going to 

be sufficient. 

 

So, this is the analog of that. I am coming up with a necessary condition that a minima point 

should show. Point 𝐶, if you were to characterize it, what is point 𝐶? It is actually a maxima. At 



which 𝑓(𝑥) is maximized while satisfying the constraint. So, it is not that much of a surprise that 

∇𝑓 is 0 at that point also. 

But let us try to now formalize this a little bit more. Let us draw our geometry once again. So 

now let me ask you a question. Let us say I am at some point and obviously I am going to 

assume I am not at the true. So I am at 𝐴, I have to assume that I am at a feasible point. So this I 

mentioned this earlier, this is a very important assumption. 

We are going to assume that at every point of the algorithm I am at a feasible point. I am not 

somewhere out in deep space. So I am at a feasible point. In this case, it means that I am on the 

circle. 

Okay. So 𝐶1(𝑥) = 0 is always going to be satisfied. That is a given. Okay. So now the question 

is I want to move to a better point. 

Okay. So I want to move. Okay. So let us say I am at a feasible point 𝑥 and I want to move to a 

point 𝑥 + 𝑠. Obviously 𝑠 is a vector of the same dimension. So 𝐶1(𝑥), what is the value of 

𝐶1(𝑥)? 0 because I am at a feasible point. 

I have moved to a new point 𝐶1(𝑥 + 𝑠), what will 𝐶1 be? Has to be also 0 because I am only 

going along feasible points. So, this is already telling me something that should happen. If I 

apply Taylor’s theorem to 𝐶1. So, Taylor’s theorem. So, 𝐶1(𝑥 + 𝑠), first term will simply be 

𝐶1(𝑥), second term will be ∇𝐶1(𝑥)
𝑇 ⋅ 𝑠. 

 

This is our simple, right. And so this tells me what? There is no option, but ∇𝐶1(𝑥)
𝑇 ⋅ 𝑠 = 0. 

∇𝐶1(𝑥)
𝑇 = 0. That is how it looks algebraically. Geometrically what does this mean? That 

means this direction 𝑠 in which I am going must be orthogonal to ∇𝐶1. 



And ∇𝐶1 as you saw in the previous slide was always pointing radially outwards. So, I know this. 

So, let us now pick a point. Let us say I am at this point. This is my current point 𝑥. Now, ∇𝐶1 at 

this point again is going to be radially outwards. 

So, what is this telling me about where 𝑓 can lie? The perpendicular line to this. So, let us take 

another color here. May not be very visible. So, switch to orange. 

Is it visible? Yeah. So, let us say for 𝑆. That means 𝑆 has to be, of course 𝑆, if I am saying 𝑆 is 

along the tangent, what further condition you think will apply on 𝑆? Should be very very small, 

infinitely small because if I make it big I will leave 𝐶1 which I do not want to do. But of course, 

all of this is in the limit as for a small quantity. So I can approximately say that this is going to be 

fine. Is this enough or something else also needs to be looked at? So far I have commented on 

feasibility, but why am I doing this whole exercise? To go to a better position, right? So that has 

not yet been brought into the picture. 

So to bring this into the picture, a better point means what? 𝑓(𝑥 + 𝑠) < 𝑓(𝑥). Only then is it an 

improvement, right? So this is what is required. Okay. What trick do you think I can apply to 

simplify this further? Same trick which is Taylor’s theorem, right. 

So, Taylor’s theorem will give me 𝑓(𝑥 + 𝑠) = 𝑓(𝑥) + ∇𝑓𝑇𝑠, okay. What does this imply? 

Obviously, ∇𝑓𝑇𝑆 should be less than 0 so that 𝑓(𝑥 + 𝑆) gets reduced with respect to 𝑓(𝑥). So, 

∇𝑓(𝑥)𝑇𝑆 < 0. Does this remind you of something that you have already studied? It is another 

way of saying 𝑆 is a descent direction which makes sense. But that is the algebraic way of 

looking at it. 

 

Let us go back to our diagram over here. Which way was my ∇𝑓? ∇𝑓 was always in the same 

direction (1, 1), right? If I use the red color for ∇𝑓 and here comes the interesting part, right? So, 

here is my ∇𝑓. And what is my condition? What? ∇𝑓𝑇𝑆 should be less than 0. So, how do I 



quantify this? The geometry of ∇𝑓𝑇𝑆 < 0 is basically a half-plane, a half-space. So, if I were to 

draw something like this, okay. 

Let me try the highlighter. Basically, this region is where 𝑆 should be. If I take a candidate vector 

that looks like this, let us take black again, oops. Let us call this 𝑆, okay. Does this 𝑆 satisfy this 

condition of decrease of the function? It does, because any 𝑆 that I take in this pink shaded 

region will satisfy ∇𝑓𝑇𝑆 < 0. So this is a suitable candidate, right? But does this, this 𝑆 which I 

have drawn, does it satisfy the feasibility condition? Yes or no? No, because ∇𝐶1
𝑇𝑆 ≠ 0. 

But it gives us a clue that of the two possible directions that I had for 𝑆, which one should I 

choose? The one in the pink region, right. So, you can see geometrically it is very easy to see. 

So, it is saying that this direction over here, this is where you should go because it is satisfying 

both the conditions. In fact, there is a certain nice similarity with gradient descent. I am going 

exactly in the minus ∇𝑓 direction so far, okay. 

The two conditions that I need to keep in mind simultaneously are ∇𝐶1
𝑇𝑆 = 0 and ∇𝑓𝑇𝑆 < 0, 

okay. Remember I want this to be strictly less than 0 because if it is not strictly less, then the 

function is not improving. Then I am just literally going around in circles. So, this is strictly less 

than 0. 

 

Is this clear what we did over here? We are just looking at the various things that have to be 

satisfied. There are only two things that I need to worry about. 

One is the constraint being satisfied. That means I stay on the feasible set. That gave me that I 

should move orthogonal. So, look at the geometry. I should move orthogonal to the gradient of 

the constraint. That makes sense, right? Because if I move orthogonal to the gradient, supposing 

I am walking on a hill and I move orthogonal to the gradient of the hill, doesn’t my height 

remain the same? So, same thing, if I am moving orthogonal to the gradient of the constraint, that 



means the constraint value is remaining the same, which is what I am doing. So I have got my 

∇𝐶1
𝑇𝑆 = 0 in plain words and I want the function to improve, I already know what that means, it 

should be a descent direction. So, ∇𝑓𝑇𝑆 < 0. Putting it together, I have got, if I were at this 

point, I have a legitimate non-zero direction in which if I go, my function will decrease. So, I can 

keep doing this in small steps, right. 

We are currently not talking about an algorithm. We are only talking about what is possible. We 

will subsequently come to your simplest algorithm for constraint optimization but right now we 

are not getting into it. Now, having understood this, what is the next logical question we should 

ask? When to stop? I can keep doing this but I should now come up with a signature of when to 

stop. Another way of saying this is when does improvement stop? That is the question that we 

are asking, okay. 

So, here is our circle which looks more like an ellipse, okay. Let us take this point over here. So, 

∇𝑓 is here, ∇𝑓 is here and my ∇𝐶1 is here, ∇𝐶1 is here. So this is ∇𝐶1, ∇𝐶1, ∇𝑓, ∇𝑓. What were 

the two conditions that we had? ∇𝐶1
𝑇𝑆 should be equal to 0, right. 

That means I am, if I were to draw a plane like this, I am in which part? Which part? Bottom left, 

top right. So, let us write ∇𝑓𝑇𝑆 < 0, which part am I? Bottom, right. So, if I were to use the 

highlighter here, this is where I need to be. For the lower point, ∇𝑓𝑇𝑆, again it will be the 

bottom. 

So, this is where I need to be. And the second condition was ∇𝐶1
𝑇𝑆 = 0, which tells me I have to 

be on this line. Is it possible if I am at either of these two points, these points were points A and 

C, right? This was my point A, this was my point C. Are these two conditions being satisfied at 

either A or C? I hear a no, anyone for a yes? Take a guess, are they being satisfied? No, because 

it is the strict inequality which is stopping us, right. So, they are not satisfied. And that is because 

of the strictness of the inequality, right. 

So, we have basically got a signature for when to stop, right. At the previous point, you saw that 

the location which I had drawn it was possible to find a feasible direction. Now I cannot do that 

anymore. So graphically what can you say is the relation between ∇𝑓 and ∇𝐶 at either of these 

two points? They again seem to be either parallel or anti-parallel, right. I can quantify this as 

when ∇𝑓 = 𝜆1∇𝐶1. 

Then further improvement is not possible. So this is a, you can think of this as a signature for a 

stationary point, right. Now, you have already a good background in something like steepest 

descent, right? So, if you were thinking now in terms of an algorithm, hopefully, if you 

implement it correctly, if you start from some intermediate point, let us say over here by this 

cross, is it likely for you to end up at the point C or is it more likely you will end up at the point 

A? You will end up at the point A because from this cross point over here if you follow 

sufficient, if you follow the first condition, which is ∇𝑓𝑇𝑆 < 0 descent direction, you will never 

go towards C because that would, in that case, the analog of that is gradient ascent, which we 

obviously will not be doing. So we are currently not talking about which algorithm we will use 

but intuitively you know that whatever algorithm, common sense algorithm you use will 

decrease the function value, and you will end up close to point A. 

And point A is actually the true solution. Nevertheless, we can see that mathematically this 

condition is being satisfied at point C as well. And that is okay because this is the signature for a 



necessary condition. So that is okay. Now, the way the literature progressed, we want to make a 

kind of a one-to-one analogy between constrained optimization and unconstrained optimization. 

In unconstrained optimization, the stationary point is ∇𝑓 = 0. 

 

In constraint optimization, is ∇𝑓 = 0 the solution? No. There is this lambda business coming 

over here. So motivated by that to draw a one-to-one analogy people defined a new function. The 

word you would have heard of many times is called the Lagrangian. 

So let us define that. So, it is 𝐿 as a function of two variables 𝑥 and 𝜆1, very simply 𝐿(𝑥, 𝜆1) =
𝑓(𝑥) − 𝜆1𝐶1(𝑥). I have defined it like this, this is called the Lagrangian and this is called the 

Lagrange multiplier. So now if you got the definition of this Lagrangian correct, now if I ask you 

what is the signature of a stationary point, what would you say? ∇𝐿 with respect to which 

variable? 𝑥, right. So, stationary point. So I will indicate that I am taking derivative with respect 

to 𝑥 by putting it as a subscript. 

And actually, there will also be an optimum value of 𝜆. So I am saying that this is the signature 

for a stationary point. So now I can, you can see that it has a kind of a one-to-one symmetry with 

unconstrained optimization and first order condition. The first order necessary condition for 

unconstrained optimization was ∇𝑓 = 0. The first order necessary condition for constraint 

optimization is ∇𝐿 = 0. 

So it is on even footing. Any questions so far? So all we have done is we have looked at 

feasibility and improvement. These are the two legs on which my algorithm, I mean my intuition 

is moving forward. These are the two things I want to look at. And that has given me two very 

simple conditions. What is the constraint over here? I am working with first order Taylor 

theorem. 

So obviously, I have to make small small steps. So that is okay. Okay. So let us move on. 


