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Proof sketch for KKT conditions - Part 2 

Now, let us go to the next part. The next part will be to show feasibility. Okay, let us look at 

feasibility. I am going to draw this once again. ∇𝐶1 this is my 𝑥, okay, this is ∇𝑓. Alright, let’s 

take some point over here, 𝑤 ∈ 𝐴. So, I am going to use a second intuitive property of convex 

sets without proof. So, what is that? If I... So, 𝑆 is on the boundary of this set because it is arrived 

at by projection, okay? 

So, if I take... let us use blue. If I take this point 𝑆 and join it to a point in the interior, so for 

example, 𝑤 is a point in the interior, I take this, okay, and I connect 𝑆 to any point outside the 

convex set here, for example, okay? What is this vector that I have just drawn over here in the 

bottom vector? So, it is not 𝑆 − ∇𝑓, but ∇𝑓 − 𝑆, right? 

 

So, this guy is ∇𝑓 − 𝑆, okay. So, the question is, will this angle always be acute, 90 degrees, or 

obtuse? It is a convex set—draw some things in your mind. So, it is a convex set. That means, 

for example, this is a convex set, right? On the other hand, this is not a convex set, right? So, 

now, given that we have a convex set, this angle between a boundary point and an interior and 

boundary point at any point outside has to always be obtuse, right? You can see that in the 

second example over here. Here I can imagine that some angle can be acute, but if I am always 

like this inside a convex set, okay? I am not proving this formally, but you can arrive at it 

intuitively. This angle will always be obtuse, okay? 



So, what are these two vectors I have? Okay, so this vector that I have drawn on the top is 𝑤 − 𝑆. 

What is the quick way to remember which way the vector points? The destination is the first guy, 

the source from where you started has the minus sign. So, I will get the 𝑤 − 𝑆 in a product. If I 

take it with ∇𝑓 − 𝑆, what should this be? Less than or equal to 0. So, once again, as I said, this is 

without proof, but geometrically you can get a good idea about it. So, we have just written this 

down. 𝑤 is up to us. We can choose 𝑤 in any way that is convenient for us, agreed? So, let us 

just flip this around because the entire claim that we made was about 𝑆 − ∇𝑓. I had ∇𝑓 − 𝑆. So, 

if I multiply by a minus sign, I have to flip the inequality. So, I will just do that. So, we get: 

𝑤 − 𝑆 ⊤ (𝑆 − ∇𝑓) ≥ 0. 

As I mentioned, 𝑤 is up to us. Choose 𝑤. 

So, say we choose 𝑤 = 𝑆 + ∇𝐶1. Will that still be in 𝐴? Clearly, right? ∇𝐶1. In fact, in this 

example, ∇𝐶1 and 𝑆 are along the same line. So, I am going to be. So, therefore, 𝑤 I have chosen 

a legitimate 𝑤. It belongs to the cone 𝐴. Okay. So, if I choose 𝑤 in this way, what happens to my 

inequality? The first term becomes ∇𝐶1, right? That is all that is there. 𝑤 − 𝑆 = ∇𝐶1. 

So, this becomes: 

∇𝐶1
⊤(𝑆 − ∇𝑓) ≥ 0. 

Fine. We can continue this logic, supposing we choose... What should I choose? 𝑆 + ∇𝐶2. Is this 

again legal? Does it belong to 𝐴? Right, you can see 𝑆 is along ∇𝐶1 and ∇𝐶2 is there. If I take 

their conic combination with coefficients 1 and 1, I will still be in the set 𝐴. So, this also belongs 

to 𝐴. So, that gives us: 

∇𝐶2
⊤(𝑆 − ∇𝑓) ≥ 0. 

So, together, what does this imply? If you look back at what we had wanted, right, we had said 

we had made a claim of a feasible and descent direction. We already showed it is a descent 

direction, and here we are showing that ∇𝐶1
⊤𝑑 ≥ 0 and ∇𝐶2

⊤𝑑 ≥ 0. Therefore, 𝑆 − ∇𝑓 is feasible. 

Which, again, I am just repeating myself, this implies that going along 𝑆 − ∇𝑓 will give me a 

better point than 𝑥, implying that 𝑥 is not a local minima, right? This contradicts point 1 of the 

KKT theorem. Okay? And therefore, our starting proof by contradiction follows through. 

Therefore, ∇𝑓 belongs to the set 𝐴. We have shown a contradiction. 

So, you notice that this is the reason why this is called a proof sketch. We did not assume 

anything particular about ∇𝐶1 or ∇𝐶2, right? We did not say that, oh, this proof follows only 

because ∇𝐶1 = −2𝑥1 − 2𝑥2 or blah blah blah. We just used it as a framework for us to visualize 

this, and I chose two constraints. Why? Because I can draw it on a plane. On the screen, if I had 

chosen three constraints or 𝑛 constraints, it is very hard to visualize. One is too easy, two is the 

best, right? So, that is why this is a proof sketch, and we have shown it for the case when both 

the inequalities are active. 

For the other cases, the proof will follow a similar kind of logic, except that steps are simpler. 

Okay, so I am not going to do the proof of b, c, and d. They are much simpler than this, but this 

is the logic that you would have to apply to arrive at it. Actually, for b and c, d is just like 

unconstrained optimization; we do not have to... the constraints are inactive, they are not playing 



any role in this thing. So, that part can be skipped. Okay? So, we will just write this. The rest of 

the cases can be done. So, I will recommend trying b or c as an exercise. 

This will give you good practice in also making sure that you have understood this correctly. 

Any questions on what we did? Pretty straightforward, right? The only things you kind of had to 

take on faith are two slightly intuitive properties of convex sets. The first property was what? 

The length of the projection is less than or equal to the length of the original vector, and strictly 

less because I said ∇𝑓 does not live in 𝐴. That was the first assumption, and the second 

assumption was about the angle between the angle subtended between an interior point and an 

exterior point. This angle is obtuse, okay? 

 

That also, by drawing a few sketches, you can convince yourself that that is true, okay? So, let 

me just make that note over here. Otherwise, later you will wonder what that is. So, convex, not 

convex, okay, and that gave us feasible and descent direction. So, to make sure that we really 

understand this, I am going to take a couple of examples. So, we will work through a couple of 

examples. The first one is very similar to what we have done; the second is a totally different 

example, and that will give us some practice, okay? 

So, we are going to continue with the same problem: 𝑓(𝑥) = 𝑥1 + 𝑥2, and 

𝐶1(𝑥) = 2 − 𝑥1
2 − 𝑥2

2 ≥ 0, 𝐶2(𝑥) = 𝑥2 ≥ 0, 

same problem, okay? And we are going to use this KKT theorem as a tester, right? So, we will 

give it a few points, and we will see how to use the KKT theorem, okay? This is your sort of first 

experience in giving a theorem—how do we use it, okay? So, let us... I am going to take two 

points: point A, which is (−1,0), and point B, which is (−√2, 0). 



These are the two points, and we will subject our points A and B to this test, okay? So, let us take 

point A. Okay, you can also write down ∇𝐶1, that is pretty straightforward, and ∇𝐶2 = (0,1). At 

point A, let us go step by step and list out what are the active and inactive constraints because 

that helps us figure out which Lagrange multipliers to worry about or not. So, at point A, which 

of the constraints are active? 

So, if I do 𝐶1(𝑥𝐴), what do I get? Substitute this coordinate inside, what do I get? 𝐶1(𝑥𝐴) = 1, 

which is strictly greater than 0. For 𝐶2(𝑥𝐴), what is it equal to? 0, right? So, this is equal to 0; 

that means this is active, and this is inactive. Can I say something about 𝜆1, 𝜆2? 𝜆1 has to be 0 

because of the complementarity conditions, right? So, my Lagrangian of 𝑥, 𝜆 is going to be 𝑓 −
𝜆2𝐶2, why? Because 𝜆1 = 0, okay? 

Now, is this an optimal point or not? If this is... if 𝑥𝐴 is optimal, this is point number 1 of the "if" 

condition of the KKT theorem, right? We have to say, if 𝑥𝐴 is optimal, then everything else is 

going to follow. 𝑓 and 𝐶 are differentiable, all of that has happened. ∇𝐶1, you can see ∇𝐶1 and 

∇𝐶2, if you substitute that, will they be linearly independent? Yes, why? What is ∇𝐶1 = (2,0) 
and ∇𝐶2 = (0,1)? Are they linearly independent? Yes, LICQ satisfied. 

So, 0.1, 0.2, and 0.3 are satisfied. Now, let us see the "then" part, right? If 𝑥 is optimal, we 

should have ∇ℒ = 0, right? So, then let us write that: 

∇𝑥ℒ = 0. 

So, ∇𝑓 must be equal to 𝜆2∇𝐶2, this must hold true, okay? What is ∇𝑓? 𝑓 is here; what is ∇𝑓? 

(1,1), right? So, this is (1,1) should be equal to 𝜆2 ⋅ (0,1), okay? 

So, if 𝑥𝐴 were to be an optimal point, we should find a set of Lagrange multipliers such that 

∇ℒ = 0 holds true, right? For this to hold true, is there any value of 𝜆1 and 𝜆2 that will satisfy 

this? No. Do what you want, 1 = 0 can never be satisfied. So, this implies no value of 𝜆2 works, 

right? Since I cannot find any lambda, this is where my test works, right? 

So, this says that 𝑥𝐴 is not optimal. This is how you use your KKT theorem: you subject your 

point to the test, the test says ∇ℒ = 0, complementarity conditions, blah, blah, blah, but for ∇ℒ =
0, I am not able to come up with a 𝜆1, 𝜆2 that does it, therefore fail. 

Let us look at point B. What is 𝐶1 at B? What is 𝐵 = (−√2, 0)? So, therefore, it is on the corner 

over there. So, 𝐶1 = 0, and 𝐶2 = 0. That means both are active. If both are active, can I say 

anything about 𝜆1, 𝜆2? They need not be 0, right? So, I would then have to have: 

∇𝑓 = 𝜆1∇𝐶1 + 𝜆2∇𝐶2. 

We have to find out whether there exist such 𝜆1 and 𝜆2 that solve or satisfy the situation. Let us 

see. So, I get (1,1) from ∇𝑓, why? Because ∇𝑓 = (1,1), since 𝑓(𝑥) = 𝑥1 + 𝑥2. 

Now, what is the value of ∇𝐶1 at 𝑥𝐵? ∇𝐶1(𝑥𝐵) = (2√2, 0). So, for the Lagrange multiplier 

equation, we write: 

∇𝑓 = 𝜆1∇𝐶1 + 𝜆2∇𝐶2. 

This gives: 



(1,1) = 𝜆1(2√2, 0) + 𝜆2(0,1). 

Does this give a value for 𝜆1 and 𝜆2? Yes, straight away: 

𝜆1 =
1

2√2
, 𝜆2 = 1. 

That’s not enough. What further thing do I have to check? I found a set of 𝜆1 and 𝜆2 that satisfy 

∇ℒ = 0. But what were these constraints? Were they equalities or inequalities? Inequalities, 

right? Therefore, there is a further stipulation on the Lagrange multipliers: they should be non-

negative. 

 

Are they non-negative? Yes. So, I have to make sure that because if you reach this point and one 

of them is negative, you’re finished. Therefore, the final note is: 

𝜆1 =
1

2√2
, 𝜆2 = 1 are non-negative. 

Therefore, to first order, 𝑥𝐵 is an optimal point that satisfies the KKT conditions. So, everyone 

has got the logic that we need to follow here, right? You verify points 2 and 3 of your "if" 

condition; they are satisfied. Then proceed to the implications of this. If it works, then you have 

found a point that satisfies the KKT conditions. 

So, you can see that this is also quite easy to code up, right? You would have to have some way 

to solve for 𝜆1 and 𝜆2, and then check if there is a solution to this system of equations. In fact, it 

is a very simple system of equations to solve. Is it a linear system of equations? Yes, right? 

Because we can write it as: 



∇𝐶(𝑥)⊤𝜆 = (
𝜆1
𝜆2
). 

This whole thing can be written compactly as: 

∇𝐶(𝑥)⊤𝜆 = (
𝜆1
𝜆2
). 

You can solve for 𝜆 using any numerical technique and then check if the solution is valid, i.e., if 

it is positive, all of that. If everything is satisfied, we can say, "Okay, to first order, this point 

passes the test and satisfies the KKT conditions." 

So, this is really one of the most foundational bedrock theorems of constrained optimization, the 

KKT conditions. I have mentioned this previously. You will come across this theorem in books 

sometimes with a sign flipped. The Lagrangian will be defined as ∇𝑓 + 𝜆1𝐶1 + 𝜆2𝐶2, so all the 

signs will get flipped. Just make sure you know what the starting point is before you get 

confused by the subsequent results. 

Is this clear? All right. 


