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Proof of concavity of the dual problem - Part 3 

So I need to minimize this. Now this looks like a slightly messy problem, right? Why? Because 

𝜆1 is in the denominator also, it is not a very nice function. So this is where you know having a 

little bit more patience is required in working with a dual problem. How will I solve this? We 

solve this as though it’s a new primal problem. So I have a function in two variables, 𝜆1, 𝜆2. Is 

there a constraint on this variable? Yes. 

So this simply means that 𝜆1 ≥ 0, 𝜆2 ≥ 0, right? So if you were faced with this as a fresh primal 

problem, what would you do? You would formulate its Lagrangian and then solve it using KKT 

conditions. So let’s do that. So the new Lagrangian, Let’s call it 𝑤. This is going to be a function 

of lambdas and let’s say 𝜇. 

 

So 𝜇 are the new Lagrange multipliers of this problem, right? So what will I get? So I’m going to 

get, what is the, so function minus 𝜆𝑖𝑐𝑖. What are the constraints in this problem? In terms, if I 

write in terms of 𝑐(𝜆), what are the constraints? 𝑐1(𝜆) is what? 𝜆1, 𝑐2(𝜆) is 𝜆2, right. So, I am 

going to write this whole expression this is my 𝑓(𝑥) − 𝜇1𝜆1 − 𝜇2𝜆2. This is the Lagrangian of 

the new problem right. So, this is going to be: 

1 + 1 −
𝜆2
2

4𝜆1
+ 8𝜆1 + 6𝜆2 



This is the first part minus 𝜇1𝜆1 − 𝜇2𝜆2. Okay. Is there a constraint on 𝜇1, 𝜇2? Should be greater 

than or equal to 0 because these are inequalities. So, 𝜇1 ≥ 0, 𝜇2 ≥ 0, okay, solved by the KKT 

theorem. So, let us do that. So everyone is following what we are doing? We have got a second 

problem which needs to be taken care of. 

So we are taking care of it. Okay. So KKT will tell me what this Lagrangian with respect to what 

variable will I minimize? 𝜆. Right. So this should be equal to 0. 

What do the complementarity conditions tell me? 𝜇1 which is a Lagrange multiplier multiplied 

by the constraint, what is the constraint? 𝜆1 should be equal to 0, 𝜇2𝜆2 should be equal to 0, ok. 

So, let us before we find this gradient, let us look at this, 𝜆1 = 0, is it allowed? actually it is not 

going to be allowed because why? Because 
1

𝜆1
 is there right. So 

1

𝜆
, so therefore 𝜆1 = 0 needs to be 

excluded from the domain of 𝑞. So that is why 𝜆1 = 0 is not allowed right. So we will just make 

a note over here, 𝜆1 = 0 not allowed in domain of 𝑞. 

If 𝜆1 = 0 is not allowed therefore what is the implication for 𝜇1? Therefore 𝜇1 has to be 0, ok. 

That is great because that will help me to make my Lagrangian solving a little bit easier. So what 

is this Lagrangian? Let us look at the expression you have for 𝑤 and take a derivative with 

respect to 𝜆1. What is the first term that you will receive? 𝜆1 is only in the denominator, correct? 

Yes, I will get a minus 
1

𝜆2
. So, this is going to be: 

 

1 + 1 −
𝜆2
2

−4𝜆1
2 + 8 

This is the derivative with respect to 𝜆1; what will I get with respect to 𝜆2? I am going to get: 

2 − 𝜆2𝜆 + 6 − 𝜇2 = 0 



Ok, and also, 𝜇2𝜆2 = 0, right? So, this 𝜇2𝜆2 again gives us two cases, right? So, in two cases, 

𝜇2 > 0, which implies that 𝜆2 = 0. Okay? So, in this case, what is my solution? So, 𝜆2 = 0, 

right? So, what happens to the first term? 

1

−4𝜆1
2 + 8 = 0 

Okay. Is there anything left on the second term? 𝜆2 = 0. So, subtract 2 from 4. So, oh sorry, that 

is the first term. 

The second term is going to give me what? −
2

4𝜆1
, so that is −

1

2𝜆1
+ 6 − 𝜇2 = 0, right? So, from 

the first expression, do I get a value of 𝜆1? Right, does 
1

4
? And from here, what value of 𝜇2 do I 

get? 4. Is 𝜆2 = 4 allowed? It is a Lagrange multiplier for the new problem. It was an inequity. 

So, it had to be greater than or equal to 0. So, it is allowed, right? So, this is legitimate, okay. 

 

So, this was easy to do. The second case is when 𝜇2 = 0, okay. So if 𝜇2 = 0, what does the first 

expression give me? If I take the gradient, what will I get? Or I can just get 𝜆2 directly from the 

second part of the gradient, correct? So, what will I get? 

𝜆2 =
1

2𝜆1
+ 6 = 0 

Because 𝜇2 = 0. So that implies that 𝜆2 = 1 − 12𝜆1. 

Now I can take this value of 𝜆2 and substitute it in. If you look at the first part of the gradient 

over here, it is purely 𝜆1 and 𝜆2. I have a relationship for 𝜆2 in terms of 𝜆1. I can put it back 

inside. So, yes, if 𝜆1 is correct, then that’s right. 



So, we can stop at this one. Are we required to have 𝜆1 and 𝜆2 greater than 0? Yes, that’s correct. 

So this shows us that we need not proceed further because any 𝜆1 greater than 0 does not apply. 

What if 𝜆1 is between 0 and 
1

12
? That’s a possibility, isn’t it? So we actually have to go ahead and 

solve it. So when you substitute this back, I will spare you a couple of steps of algebra. 

What you get is that this is the solution for 𝜆1. So, what is the 𝜆1 that satisfies this? It’s 

imaginary, right? So, obviously, that is not feasible. So this case, where 𝜇2 = 0, does not work. I 

am only left with 𝜇2 > 0. 

 

So, let us see. We did not calculate it, so in this case, 1. Okay, we already know 𝜆2, right? So, 

let’s create a new page. So, the only solution is 𝜆1 and 𝜆2. What was the value of 𝜆1? 
1

4
. And 

what is the value of 𝜆2? 0, right? This is the only solution that works. 

So now, what is 𝑞(𝜆)? Let us look back at this. Where has our 𝑞(𝜆) gone? This expression right 

here, this big expression right here. So, in this, I am going to substitute 𝜆1 with 
1

4
 and 𝜆2 with 0, 

okay? So, you can do it mentally because 𝜆2 = 0 and 𝜆1 =
1

4
. What is the optimum value that 

you get? There should not be a minus sign. 

Oh, I’m sorry. Ah, right. And we had a relationship for 𝑥1 and 𝑥2 in terms of 𝜆, right? If you go 

back, where did that go? Here is 𝑥1
∗, 𝑥2

∗ = (
1

2
) 𝜆1 and (1 − 𝜆2)(2𝜆1). So, if I substitute 𝜆1 =

1

4
 in 

this, what do I get for 𝑥1
∗? 2, 2. And if you recall our primal problem, what was our 𝑓∗? −4 and 

𝑥1
∗𝑥2

∗ was also equal to 2, right? So, this was the only KKT point that worked correctly 

throughout. So, here you have the dual equal to the primal right, and that is not a surprise 

because the objective function, I mean, the optimization problem is convex, so there is no duality 

gap. 



So this was just to provide you with an example of problem solving using the duality method. So 

you can see that there can be many solutions in between that arise due to the various cases. But 

you have to eliminate them based on the previous, the step knowledge of the previous step. For 

example, the domain of 𝑞 should exclude places where it blows up, and so on. 

So that helps you rule it out. So, if we just do a quick refresher on what we did, we took a very 

simple problem like this. Minimizing −𝑥1 + 𝑥2 with these constraints. We saw that the solution 

graphically is correct, right? The optimum value is −4 at the point (2,2). Then we took the dual 

problem formulation; the objective function remained as it is, which is here, and I had the 

constraints over here. To get to the Lagrangian dual, step 1 was to minimize the Lagrangian with 

respect to 𝑥, which I did over here. 

So, by taking gradients with respect to 𝑥1 and 𝑥2, I arrived at this relationship between 𝑥 and 𝜆. I 

substituted that back into the Lagrangian dual, and I obtained one big expression for the 

Lagrangian dual. Fine. Then, that allows us to move on to step 2 of duality. Step 2 of duality is to 

maximize the Lagrangian dual norm. So I take this problem and solve the maximum problem. 

I did some algebra to convert the maximization into minimization, and this is the expression that 

I obtained. This, in itself, is an optimization problem. So, I applied KKT and formed a new 

Lagrangian for this function. I called it 𝑊, and the Lagrange multipliers are 𝜇1 and 𝜇2, right? So, 

this is my 𝑓(𝑥), and this is my 𝜆𝑖𝑐𝑖, right? This is how we write the Lagrangian function with 

respect to 𝑊. So, that is what I have done here: 𝑓(𝑥) is as it is, and I have my 𝜇1, 𝜆1, 𝜇2, and 𝜆2. 

Okay? But with the constraints that 𝜇1 and 𝜇2 have to be greater than or equal to 0 because we 

are dealing with inequalities, okay. So, we solve this using KKT by setting the derivative with 

respect to the variable, which is 𝜆, equal to 0. So, with respect to 𝜆, I took the gradients and 

essentially solved for it. We encountered some cases. In case 1, I found the correct solution. 

In case 2, I looked at something that led me to an incorrect solution. So, I eliminated, "Oh, we 

not only talked about lambdas being real, but we also said they should be non-negative, right?" 

Why should lambdas be non-negative? Correct, that condition is already present in 𝜆, so being 

complex is obviously ruled out, right? So that’s how you would solve a problem using duality, 

step by step, right? So, it requires a little more patience because you’re solving two optimization 

problems, right? So, if the primal problem is easier, you should solve that. If the dual problem is 

easier, you should solve that, okay? You can always use some technology. CVX is a technology, 

isn’t it? Because it’s an automated set of rules that solves your problems and provides you with 

the solution. So, as homework and to learn a new tool, go back and install the CVX toolbox on 

MATLAB or Python, and try to solve this problem, you know. 

It will provide you with a lot of extra information. It will explain what the duality gap is, what 

the Lagrange multipliers are, and the intermediate steps. So, it is also a nice way to see what is 

going on behind the scenes in solving these problems, okay? But just keep in mind that if you 

start applying this to real-world problems, it is very slow. So keep that in mind. That is the 

definition of a convex optimization problem. 

The objective function is a convex function, and the constraint set is a convex set. Okay, that is a 

good question. So, if my constraints are convex functions, does that mean that the feasible set is 

a convex set? Please say that again. Correct, no; however, the feasible set is now being defined 



by multiple convex functions. The correct sentence is: "𝑐1𝑥 ≥ 0, and 𝑐2𝑥 ≥ 0; these are convex 

functions." 

Does it imply that the feasible 𝑥 is? So, let us take an example to see if that always holds true. 

So, let us say that 𝑐1𝑥 = 𝑥2, which is greater than or equal to 0. Okay? Let us say that 𝑐2𝑥 = 2𝑥 

and 𝑒𝑥 − 1 ≥ 0, right? So, no, that does not make sense, okay? So, what if this is my convex 

function, and let us say my feasible set becomes this? Then, let us say this is my 𝑐1𝑥, and let us 

say that this is my 𝑐2𝑥. Is it possible? So, 𝑐2, the intersection that I have here, is not convex, but 

how will I define 𝑐2𝑥? So, the constraints have to be defined such that 𝑐𝑖𝑥 ≥ 0, right? So, 𝑐2 is 

not, right? So, this is more like −𝑥2 ≥ 0, right? So, you are correct. So, if the functions are 

convex, then the intersection seems to be convex. 

 

So, this is not a good example because the constraint function is not convex. So, you have a 

counterexample where the 𝑐’s are convex, but the feasible set is not convex. Yeah, but 

considering a parabola is not enough because the constraint has to be that the function is greater 

than or equal to 0. So, if I take two parabolas—this one and this one—to define, and you are 

thinking of this as the feasible set, right? So, one of the constraints will be concave, while the 

other constraint will be convex. So, that means it is not a counterexample, right? So, you’re 

saying this was one of the tutorial problems, right? Intersection of convex sets. 

Yeah, but here we are talking about functions. No, I can define a function 𝑓(𝑥) = 𝑥1
2 + 𝑥2

2. But I 

am telling you that this is my domain. It is up to me to define the domain. I said that this is the 

domain of the function. In this domain, the function is 𝑥1
2 + 𝑥2

2. 

So, the domain is concave; I defined it to be so, but the object, the function, is convex. So, I have 

a convex function on a concave domain, right? So, it is not necessary that just because the 

function is concave, the domain also has to be convex. What is concave? The 𝑐’s. Correct, 



correct, right, right, right, and right. So if it is a con, then the intersection of concave functions is 

also a con; it seems like it, right? Correct, correct, correct. 

Let us look for a formal statement of this. I mean, by arguing amongst ourselves, we can only 

come up with some counterexamples. So, I do not want to make a definitive statement. We will, 

or maybe I will, post on Google Classroom what the conclusive information is about it. It is 

convex. It is convex, right? convex function He is talking about the intersection of the domains; 

you cannot intersect functions, but you can intersect the domains. 

I’ll post a definitive answer for this, okay? The domain of what? The feasible region is concave. 

Then it is not a convex optimization problem. Right away. The domain is concave; I mean, the 

domain is non-convex. 

Like this. So, you have to take care of the projection operation. What we have defined in class is 

projection onto convex sets. That is a well-defined operation. A projection onto a non-convex set 

is, first of all, lacking uniqueness. 

So, that is the tricky part. So, people may perform tricks such as expanding their domain to make 

it convex in a minimal way, and then solving it, and so on. Yes, I will look it up, and there may 

be other ways to define a convex set besides this one. If that point happens to be in the interior, 

that is fine. If you are in the interior of the domain, then the constraints are inactive; it is like an 

unconstrained optimization problem. In fact, the solution to this problem is 0, which is the 

interior of the domain. 

So, it does not matter what the domain set is, right? But if it is on the boundary, that may be the 

tricky part, right? Because of that boundary point, how did it come to be? Did it get projected 

from somewhere else? Okay, let’s say you solve it numerically. Fine. Which is strictly inside the 

set. Then you are done. Yeah, but I doubt these things happen very often in real life. 


