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  Welcome to the VLSI Physical Design with Timing Analysis course.  In this lecture, we 
will discuss about Complexity Analysis of Algorithms.  The content of this lecture is that 
first of all we will discuss about the algorithms and then we will discuss data structure 
which is needed to implement algorithms, then complexity analysis through asymptotic 
notations will also be explained.  Then finally, we will discuss about NP-hardness with two 
different category of NP-hardness like polynomial time algorithms and NP algorithms.  So 
first we discuss about the algorithms.  So algorithms is basically it is try to solve a problem. 
So let us say if you have a problem, any problem statement let us say we do a linear search 
or sorting.  So, any problem, so we write some step of instructions to solve that problem.  
So that finite state of instruction is called the algorithm.  So, it should give a output after a 
stipulated time frame. Whenever you give some input to that algorithm, it will give a 
desired output for which purpose we have written that algorithm.  So, there are several 
algorithms are there.  One is called greedy algorithm.  The greedy algorithm tries to find 
the solution of the problem which is basically locally optimum.  It gets the solution in less 
time. However, it does not go into the global optimum.  For example, I will give a example 
here.  Let us say I have a graph like this.  So let us say I will start from this point.  If I go 
by greedy algorithm, I will come to this point. So, this is the solution if I go by the greedy 
algorithm.  However actual solution, global solution is remaining here, but we get the 
solution in less time. So, the advantage of greedy algorithm is that it finds a solution in less 
time, but it is locally optimum.  What is divide and conquer?  If you have any problem 
statement that you divide into subproblems, then those subproblems are disjoint in nature. 
So, there is no overlap between those subproblems. Then each of the subproblems will 
solve independently.  Then you can combine the solution of each one of them to find the 
final solution. That is called divide and conquer algorithm.   

Then comes the dynamic programming algorithm. In this dynamic programming 
algorithm, the main problem is divided into subproblems. However, there is an overlap 



between the subproblems. So, in that case, the divide and conquer approach is not suitable.  
Reason being that it does those overlapped problem solution multiple times.  But the 
dynamic programming, so solve those solution and store it in net tabular format and utilize 
that later whenever it is needed.  So dynamic programming solves those type of problem 
statement in less time. Similarly, integer linear programming that is used in routing 
algorithms in VLSI physical design.  So, let us come to the data structure.  So, data structure 
is basically method of storing, organizing the data such that we can efficiently implement 
the algorithm properly.  So, here we need to basically how we can access the data properly 
and modify the data properly.  So basic data structures whatever we use in day-to-day 
implementations are stack, link list, queue, tree and graph. So those are basically used most 
often in the implementation of the algorithms.  So, here in VLSI physical design, we have 
different types of little bit different types of data structure which uses the same framework, 
but the implementation when you go for VLSI physical design data structures, we use link 
list of blocks, bin-based method, neighbor pointer and corner stitching.  So, these are more 
advanced data structure basically focusing towards the requirement of VLSI physical 
design.  So, this is more basically important for VLSI physical design implementations. 

So, let us discuss why we should discuss about the time and space complexity.  Time 
complexity and space complexity.  Time complexity is that how much time it will take to 
solve any problem.  So, in that case, we need to basically find the performance of that 
algorithm.  Let us say I have algorithm A1; I have algorithm A2. So, I need to compare 
both of them.  Which one is better for my problem statement?  So, in that case, I need to 
check what is the time it takes for A1 and what is the time it takes for A2 which takes less 
time that I use in my implementations.  So, it is used for performance evaluation and also, 
we need to based on that we can choose a particular algorithm.  And one more thing is 
resource management.  Resource means space, memory requirement.  

Whenever let us say I have a algorithm A1, it takes some memory space M1 and let us say 
I have A2 which takes memory space M2.  So, this M1 and M2 we need to check which 
take less memory.  Because it also sometimes the memory requirement is huge, so space 
requirement will be more.  So basically, to reduce that space complexity problem, we need 
to also consider the space requirement whenever you are implementing any algorithm.  So 
overall optimization of any kind of problem statement we need to analyze the algorithm in 
terms of time and space complexity. 

So, whenever you basically implement or using an algorithm for a particular problem 
statement that runtime of the algorithm will depend upon type of input.  So, the runtime 
will change based on the type of the input.  Let us say I have one particular input which 
will pass through all the steps of the algorithm and let us say another input which is going 
through only one part of the algorithm.  So, in that case the type of input will change the 
runtime of the algorithm.  So, it is basically it is not possible to evaluate the runtime of the 
algorithm depending upon the type of the inputs.  



And it will also depends upon the machine also, which machine you are implementing the 
algorithm.  Let us say I have a very fast machine; it will execute the algorithm in faster 
manner compared to the machine which is slow in nature.  So, in that case it is not right 
way of doing the comparison. Similarly, we can use different programming languages like 
MATLAB, Python or C or C++ to implement the algorithm.  So, this says that the runtime 
of the algorithm depends upon the type of the input, machine and programming language. 
So, we need to find out a unique method where we can find the runtime of the algorithm 
which does not depend upon all these things.  So let us take an example here.  So, you have 
a linear search.  Here what we are doing, we have a array is there which is X which is 
having n element and in that array we are finding whether that key is there or not.  So, we 
have a for loop, which is running for n plus 1 time. So, because 0 to n minus 1 is n, however 
the last time it will go and check whether it is n minus 1 or not that is why it is n plus 1.  
So, then the line number 2 will run for n times, then the return i will run for the one time.  
So, then the last return will run for the one time.  So, the total complexity, total time to 
execute the algorithm is 2n plus 3.  So total time to execute this algorithm is 2n plus 3. So 
here what we have to do, we have to remove the constant factors.  So, after you remove the 
constant factor, runtime becomes 2n.  Then we need to ignore the coefficients, the 
coefficients the 2 we have to remove.  Now I have n. So, the remaining term is called the 
order of growth that is n.  

So here basically this is order of the growth of this algorithm is order of n.  So, this previous 
algorithm whatever it is there, it is order of n.  So then let us take some example.  Let us 
say I have 70n log n.  If I have a algorithm which takes 70n log n which we can also express 
as order of n log n where we are dropping the coefficient 70.  

Similarly, here 

28 2 10n n+ +  

So, in this case the lower order terms we remove and also the coefficient 8 we remove.  So, 
this is order n square.  So, this order n square is basically is the complexity of this algorithm.  
So, whenever you are doing this kind of analysis, we remove the lower order terms and we 
remove the coefficient in the higher order terms to find the order of the algorithm.  

So basically, there is a popular way of analyzing the algorithm which does not depend upon 
the type of the inputs.  It does not depend upon the programming language which we are 
using to implement that one.  It also does not depend upon the machine.  It does not depend 
upon the inputs.  It does not depend upon the programming language.  It does not depend 
upon the machine.  So, in those that type of analysis is called asymptotic analysis.  So, we 
will discuss about this asymptotic analysis in detail in this lecture.  So, we have three 
different type of asymptotic analysis. 



We will discuss one at a time.  The first one is the Big-Oh notation.  The first asymptotic 
analysis is called the Big-Oh notation which says about the upper bound on the asymptotic 
behavior of the function.  The Big-Oh denotes the upper bound.  The upper bound means 
that I have a function f of n and this function is given to me.  Basically, I need to express 
in terms of Big-Oh of g of n if there exist two constant c and n0 such that 0 less than equal 
to f of n less than equal to c of g of n for all n greater than equals to n0. What does it mean?  
So, you have a function f of n which is plotted here.  So, this graph is plotted here, and I 
have another graph is there c of g of n and I need to find two things.  One is c and one is 
n0.  So, these two I need to find out and both are positive constant. 

They should not be negative.  They should be positive constant such that my f of n is less 
than equals to c of g of  n.  Okay.  So, this then we can represent this one as Big-Oh of g 
of n.   

So let us take an example here. I have a function f of n.  This is a function and I have 
another function which is g of n which is n equal to n cube.  So, we need to find n0 and c 
such that your f of n is less than equal to this condition should be satisfied.  We need to 
find out c and n0 such that my f of n is bounded by 0 and c of g of n.  So, in this case this 
is my f of n and this I need to this is my f of n and I need to find c of g of n. 

Okay.  I need to find c and n such that this inequality holds good.  So, if you can go by here 
if I take n0 equals to 1, I will get c as 133.  If I n0 equal to 10, I will get 8.62.  So, I can say 
basically f of n is Big-Oh of g of n. If this inequality holds good, I can write f of n is Big-
Oh of g of n and g of n is basically Big-Oh of n cube.   

So, now we go to the omega notation.  This omega notation basically tells about the 
asymptotic lower bound.  We discussed about the asymptotic upper bound.  Now we are 
discussing about the asymptotic lower bound and here I have a function f of n is given to 
me and I have another function g of n is given to me.  I need to find two positive constants 
c and n0.  I need to find two positive constants c and n0 such that my c of g of n is less than 
f of n for all n greater than equals to n0.  So, this inequality should holds good.  So, in this 
case if you can see here, I have the function. This is my function here which is plotted, and 
your x axis is actually size of the input.  This n is input size.  This n is input size and y is 
the value of the function.  So, I need to find this n0 above which your f of n is greater than 
c of g of n. So, then you can write f of n as omega of g of n.  So now you take this example 
here.  I have a function f of n here.  I have a function g of n here.  Now I need to find out 
two constant which is basically n0 and c and which is this is the constant such that this 
inequality holds good.  So, then I can say my f of n is omega of g of n or omega of n cube. 

So now we will go into the third type of asymptotic notation which is theta.  Similarly, the 
theta is my third type of notation.  One is called asymptotic tight bound.  So, what 
asymptotic tight bound means that it will be if your f of n is theta of g of n if and only if 



my f of n is big O of g of n and f of n is omega of g of n.  If both conditions holds good 
then f of n is the theta of g of n. So, I need to write this one.  So, f of n is omega of g of n.  
I need to find three things here.  I need to find three positive constant c1, c2 and n0.  All 
the three are positive such that my this inequality holds good.  So then if you can see here 
after n0 this f of n is bounded by c1 g of n and c2 g of n. So, then f of n is called theta of g 
of n.   

So, we can take this example because we have already proven that your f of n is a big O of 
g of n and f of n is also omega of g of n.  Hence, I can from the same argument I can say 
that my f of n should be theta of g of n or theta of n cube or we can find out those constant 
c1, c2 and n0 such that my this inequality holds good.  I have this c1 should be 7, c2 is 133 
and n0 is 1.  So, if this is the case then my f of n is theta of g of n equal to theta of n cube.  

So, we discussed about big O notation.  We discussed about the omega notation, and we 
discussed about the theta notation.  Big O is my asymptotic upper bound and omega is my 
asymptotic lower bound and theta is my asymptotic tight bound.  So, after discussing all 
this let us discuss how my different types of complexity of different algorithms, how it 
grows actually with input size and time your time it requires to execute that one.  So here 
if you can say your input size is x axis is your input size and y axis is your time.  

So, first one is O of 1 which is constant time algorithm.  This is called constant time 
algorithm.  So, next one is O of log n.  This is called logarithmic algorithm, algorithm 
which is logarithmic in nature whose time complexity is logarithmic in nature.  Then you 
have big O of n which is linear time complexity.  

It is the time increases with the n.  It is proportional to n.  So, it is linear time complexity.  
This is n log n.  So, it is basically takes more time than linear time algorithms n log n.  Then 
you have big O of n square which is or order of n square which is quadratic time 
complexity. 

So, we have basically big O of 1 which takes very less time.  Then you have order of log 
n.  Then comes my order of n.  Then comes my order of n log n.  Then comes my order of 
n square.  So, if I can have multiple different algorithms, so then if I have two different 
algorithms which is basically takes less time is the constant time algorithm will take less 
time. 
 
  Then comes the big O of log n.  Then you have linear time algorithm.  Then n log n.  Then 
quadratic complexity algorithm.  Then you have last one is basically order of 2 to the power 
n which is exponential time complexity which is basically order of 2 to the power n. So, 
this takes very last time exponential time complexity. It grows exponentially with number 
of input size.  So here we just give an example of each one of them.  So your O of log n is 
your binary search.  Whenever you are doing binary search it is O of log n and you have 



linear search is O of n.  Order of n log n is your merge search or insertion search. It takes 
order of n log n.  Then the bubble search will take order of n square.  Then you have order 
of 2 to the power n is your SAT problem and Knapsack problems.  So, these two are 
basically exponential time complexity problem and it takes very long time to solve because 
your number of input increases and your time will increase by order of 2 to the power n.   

So let us discuss some of the algorithms.  How it is basically one algorithm how it can be 
implemented in two different time complexity we can discuss. Here basically we are doing 
sum of n natural numbers.  We are adding n natural numbers.  So here the inputs are n 
integer numbers.  Then the output is sum of the first n natural numbers.  So, the n is the 
input to the algorithm and output is the sum of first n natural numbers. So here if you can 
see the first one is initialization step.  It will run for one time.  Then the second step is 
attempt n plus 1 because as I told you it runs for n times but the finally it has to go to check 
that whether it is i equal to n or not that is why it is n plus 1.  Now you have basically a 
equal to a plus xi, which is we are doing the accumulation operation here which is running 
for n times.  So, and the last return runs for one time.  So, the total time it takes is f of n 
equal to 2n plus 3 which we can which we discussed earlier we drop the basically constant 
and the coefficients after that f of n is order of g of n.  

So, this is basically your complexity of the algorithm.  So, this also it is called omega of n 
and basically theta of n.  So now we same problem we can solve in order of one algorithm 
by doing this basically using this formula which runs for one time.  It inputs the number of 
inputs basically sum of n natural numbers then it will solve this in one equation.  It does 
not require any kind of iterations.  So that is why this complexity of this algorithm is 
basically f of n equal to 2 which is f of n equal to order of 1. f of n is also omega of 1, f of 
n is equal to theta of 1.  Now we will go into another example 2.  We are basically looking 
into the searching algorithm.  In this searching algorithm I have input n element basically 
array with n element and the output is basically based on the key whatever it is given it is 
there or not we need to check it.  So I have this x which is a array and n is the number of 
element in the array and the key is whether that element is there in the array or not. So let 
us we have this linear search.  Basically, linear search means we need to check that whether 
the key is 56 is there or not.  The first element we checked it is not there.  Second element 
we checked it is not there.  Third element we checked it is not there. Fourth, so sixth 
element we find the key is there.  So in this case what I found is that in this case what we 
found is that we need to search each and every element.  So then the time complexity will 
depend upon worst case will go till the last element in the array.  So that is why it is called 
basically order of n complexity.  Complexity of this algorithm is order of n. Then we have 
basically this is a binary search algorithm.  We have a key here 56.  I need to check that 
whether this 56 is there or not.  Here there is a condition is there in case of binary search 
your array should be sorted  earlier.  But in case of this one in this linear search this is 
unsorted array.  This is unsorted integers actually. 



But in case of binary search your array should be sorted.  So let us say this is a sorted array 
with 10 elements and I need to search whether the 56 is there or not.  So, I have 10 elements.  
So I need to check in the middle.  The middle is fourth element and whether this fourth 
element is greater than 56 or lesser than 56. If it is greater than 56 then I need to look into 
in this section.  So, looks that it is 23 and it is 56 is greater than basically 23.  So, I need to 
look into the array in this area.  Now I will take the middle of that one which is 7 and here 
I can find in this one the 56 is greater than 55.  So, what I have to go again I need to go in 
this area. In this area I will check whether my element is there or not.  I finally found in 56.  
So how many checks I need to do here.  I just check for three times.  So, I check at 4, I 
check for 7, then I check for 8.  So, three checks I can find the element in the array. So this 
is called order of log n complexity.  This algorithm, binary search algorithm complexities 
order of log n base 2.   

 

In this slide we will discuss about the classes of algorithm. So, there are different classes 
of algorithm which is used to solve different highly compute intensive problems. So 
basically, here in this case we have classified into different category.  One is P. P means 
that polynomial time algorithm which can find the solution, we can efficiently find the 
solution of the problem statement in polynomial time.  The NP is basically non-
deterministic polynomial time where you cannot find a solution of the algorithm in 
polynomial time.  However, if there is any solution basically if we can guess a solution, we 
can verify that in polynomial time.  So, verifying the solution is basically is takes less time 
than finding a solution for problem statement. Then you have NP complete which does a 
benchmarking between the NP hard and NP.  So, it is a borderline for the level of difficulty 
of the problem between your NP and NP hard.  So now first we will discuss about the 
polynomial time algorithm, the P, the problems which is solvable in polynomial time.  So, 
where your complexity is basically order of n to the power k where k is some constant, n 
is the input size.  So, we discussed many algorithm like linear search, then whatever the 
mod sort, quick sort all are polynomial time algorithms.  So here we discuss about that NP 
that non-deterministic polynomial time algorithm which where we cannot find a solution 
in polynomial time.  

These problems are very hard to solve.  And the only way one way to find it is that guess 
some solution for this problem, and we can verify that the solution is correct from that 
problem in correct or wrong for that problem statement in polynomial time.  The main idea 
here is that we cannot find a solution for this problem statement if the problem is NP 
problem and we can guess some solution for that problem statement and that solution we 
can verify in polynomial time.  So, then there is a procedure called reduction.  This 
reduction is what is happening here is that here you have one problem A and there is 
another problem basically B is there.  So basically we find an instance of A and we can 
transfer or refresh that instance to the instance in B and basically so that the solving instance 



of B is also same as solving a instance of A. So let us say I have a instance of problem A 
and I basically transpose or refresh that problem to another instance of problem B.  Then 
if let us say I find a solution to the problem in the instance of B then that leads to solving 
the problem A in polynomial time.  So, this is called reduction.  So, NP-hard algorithms 
are the algorithms where we have let us say you assume a problem statement X.  That 
problem statement X is basically all the problems in the NP set are reducible to that problem 
A in polynomial time then that problem is called the NP-hard problem. Then here if you 
can see the Venn diagram, we have a polynomial time algorithms.  We have NP non-
deterministic polynomial time algorithm.  Basically, this is the set for non-deterministic 
polynomial time algorithm.  This is the non-deterministic polynomial time algorithm.  Then 
we have basically NP-hard and NP-hard then the NP-complete is the intersection of this.  
So, NP-intersection means a problem X is NP-complete if X means belongs to NP and it 
also belongs to NP-hard.  

So, this set is your NP-complete which is the benchmarking between the NP and NP-hard.  
So, if you have problems in NP-hard problems how we can solve it?  Basically, most 
optimization problems in VLSI physical designs are NP-hard and we are looking for 
polynomial time algorithms which basically how we can solve this in polynomial time.  So 
is it a solution is needed even if it is not optimal due to the practical nature of your physical 
design automation flow.  Basically we need to find out a method even if your problem 
statement is NP-hard how we can find a solution to that problem and we can solve that 
problem in reasonable time frame such that our complete chip design flow can be done in 
a stipulated time.  So basically, we have lots of problems in the VLSI physical design which 
is the NP-hard.  

We can solve those problems in four different types of algorithms are there to solve these 
NP-hard problems.  One is the exponential algorithms then special case algorithm then 
approximation algorithm and then heuristic driven algorithms. In case of exponential 
algorithm we divide the problem into sub problems small problems and which is solvable 
in polynomial time and after the let us say I have a problem P, I  can break that into P1, P2 
… Pn then I will find a solution of each one of  them S1, S2 … Sn in polynomial time 
because the problem size is smaller now I  can find a solution in polynomial time.  Then I 
can merge all of them using another technique which will not take exponential time.  So, 
then I can find a solution of the problem statement, and which is taking less time. So, this 
even if you are not getting into the global solution but will come closer to the global 
solution.  Then we have a special case algorithm where we are basically for example your 
graph coloring for a general graph is NP-complete but in case of VLSI physical design 
some specific graphs are there where this graph coloring is can be solved in polynomial 
time.  So, when your color graph coloring k equal to 2 when the k is 2 number of color is 
2 then that will be solvable in polynomial time.   



Then we have approximation algorithm this is very interesting.  Actually, solving a 
problem will take very long time and if we follow that method we cannot send the chip for 
fabrication.  So, what we do is that we do not look for the optimal solution but we can look 
for a near optimal solution is good enough for our doing the VLSI physical design problem.  

So, in that case what you do we have phi and phi star.  The phi is a solution of the solution 
produced by the algorithm and phi star is the solution of the optimal solution of the 
problem.  So, this phi is not the actual solution is one of the solution and phi star is the 
optimal solution.  So, this we define some gamma here phi by phi star where we can 
basically say that the phi is closer to phi star.  For example, I will give you example here 
let us say we have different types of spice engines are there.  

One is called each spice which is more accurate it takes long time.  But it will give you 
accurate result when you have smaller designs it is possible to find the solution in less time.  
But let us say I have a finesim which basically solve the problem in less time but the 
solution is not accurate.  So, a spice is more time, and the solution is accurate.  So, 
depending upon our requirement if I want to do a very bigger simulation and I want the 
result to be functionally correct I want the functional evaluation of my design I do not look 
for the very accurate picosecond delay. So, I can run the fine sim to run that and find the 
solution in less time and verify my design in less time.  So, this is one example of 
approximate algorithm.  Then we have different types of heuristic driven algorithms are 
there which are used to solve this NP complete problems.  Basically, even if you are not 
able to get globally optimal solutions, you can get the solution in less time.  So, it has low 
time and space complexity, and it produces near optimal solution in realistic time frame 
and it has a very good average case performance. For example, your simulator handling, 
we will discuss in future slides is one of the heuristic driven algorithm.   

Thank you very much for listening to me. 


