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See, last class we entered, we started at the end to design the, we had got the block 
diagram for the speed loop and we started to design the controller based on the pole zero 
cancellation and we found that pole zero cancellation will lead to instability or those we 
are losing the S time. Let us start with that one, speed control.  
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Now, our reference is the omega S reference. Here is our PI controller that is Km into 1 
plus Tn S divide by Tn S. Now, this will give the current reference and the current 
transfer function, approximate current transfer function which we can use in the speed 
loop is 1 plus 2 sigma S. The sigma we know, it is the sum of the smaller time constant 
that is the convertor lag and the current filter time constant. This we will give it to the 
machine, machine. If you see, this RA by Km by Tm S, this will be our speed feedback. 
This will come, feedback we have the gain as well as filter. 
  
Now, when we are considering the speed, the pole zero cancellation that is Tn; let us see 
let us write the transfer function for this one that is omega s of output feedback divided 
by reference is equal to Kn RA by Tm Tn K2 Kn into 1 by S 1 by 1 plus 2 sigma S to 1 by S 
into 1 plus Tn S, this is from here, this one, divided by this the, this the, this is the open 
loop gain that is the from this, from here to here, not the feedback loop, that is the G(S) 
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part plus 1 plus Kn RA by Tm Tn K2 Km into 1 plus S square into 1 plus 2 sigma S into 1 
plus Tn S into our feedback filter that is K1 by 1 plus T1 S. 
  
Now, if we use the pole zero cancellation that means if we are cancelling this with this 
one, larger time constant, then our final transfer function will be of the form, will be Kn 
RA by Km K2 into 1 plus T1 S divided by after the cancellation if you properly write down 
the transfer function, it will be S cube Tn Tm T1 plus S square Tn Tm plus constant Kn RA 
K1 divided by K1 K2. So, if you see here, the S term is missing. S square is there, S cube 
is there, S term constant is there. So S, so S time is missing in the characteristic equation 
that is the denominator. Hence, the speed control system is unstable. So, the loop should 
be optimised using a different approach. 
  
But if you see, if you do not do the cancellation part and if you write down, the S time 
will be there, all the time will be there. That means system is stable. Now, the question is 
optimising. Optimise means we have studied in the context of front end AC to Dc 
convertor, so we will again repeat that one here for clarity. 
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See, general consideration for optimisation, for optimisation. That is that means, we are 
optimising in terms of the bandwidth. See, the dynamic performance of a control system 
is good with a controlled variable very rapidly reaches the reference input. Ideally, for 
any frequency of input variation that means if in the closed loop in the closed loop 
control system, the input we give any, ideally for any frequency of input variation. That 
means we give a signal with sinusoidally varying, frequency varying let the amplitude be 
constant. 
  
Then output should track the input variable instantaneously. That is what we want. What 
we want when we vary the input, here variation we are trying to do with various 
frequency of signal with constant amplitude; then input should track, the output should 
track the input. That means for different frequencies of operation if the output tracks the 
input that means the ratio between the output and input will be one. So, but as the 
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frequency increases because of the system lag, slowly this system’s response that feed 
back signal will not be following the output.  
 
So, that way if that frequency and frequency component and as the input frequency 
varies, slowly the output gain will slowly decrease. So, there we talk about the 
bandwidth. So, for a practical system, in terms of frequency range, the modulus of the 
output, output gain should be very close to one over a wide frequency range that is 
bandwidth that means the ratio between the output and the input. So, if you see here, we 
want something optimised. We choose our controller such that the gain, modulus of the 
gain should be one for as fast as possible log omega here. 
  
Now, so optimisation aims at bringing the modulus of the frequency characteristic as 
close as to one or a wide frequency range. This is also called modulus hugging. This we 
have studied when we when we were going through the controller design for the ac to d c 
converter. The same technique we can use here. 
  
So, what we want now? Let us find out the transfer function; without pole zero 
cancellation, let us write down the transfer function. If you say, so now without pole zero 
cancellation, the omega feedback S divided by omega R s is equal to Kn RA by K2 Km 
into 1 plus Tn S because of our PI controller and again because of our feedback time 
constant because of the filter. Then finally, it will be S square Tm Tn into 1 plus 2 sigma 
S into 1 plus T1 S plus Kn RA K1 by K2 into Km into 1 plus Tn S.  
 
So here, if you see here, if you expand this portion, if you expand this portion alone, let 
us do that one that is 1 plus 2 sigma S into 1 plus T1 S. Then this will be L will be 1 plus 
2 sigma S plus T1 S plus S square T1 2 sigma. See, this also we can write as 1 plus S into 
2 sigma plus T1 plus S square T1 2 sigma. See here, this are filter time constants T1 and 2 
sigma that is because from the current control loop, these are smaller time constants 
compared to our electromechanical time constant. So, because this loop is this is coming 
in a loop where the maximum response depends on the electromechanical time constant; 
so, this also, we can neglect this one. On practical purpose, we can do it and this 
approximately, we can represent as a first order lag, again like a first order case. 
  
That is 1 plus delta S where delta is equal to 2 sigma plus del that is delta is equal to 2 
sigma plus T. So, that means order of the denominator we can reduce it. So, still the 
characteristic equation is well within the frequency range of our system, system with 
which it responds. So, if you do that way, finally the transfer function we can write it like 
this. The whole purpose is to bring the whole system for modulus, I think whether we 
have to bring it either to the second order or third order because we have we know how 
to do the do the optimisation for two second order as well as third order. So, let us see 
what is the order of the system if you do it here. 
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So, the final system will be Kn RA by K2 Km into 1 plus Tn S into 1 plus T1 S divide by S 
square Tm Tn into 1 plus 2 sigma S into 1 plus T1 S plus Kn RA K1 by K2 Km into 1 plus Tn 
S. Now, this we have approximated as 1 plus delta S where delta is equal to 2 sigma plus 
T1, this one. So, the final transfer function will be if you do the, if you properly simplify 
this one, the final will be Kn RA by Km K2 into 1 plus Tn S into 1 plus T1 S divided by S 
cube Tm Tn delta plus S square Tm Tn plus K0 K1 Tn into S time is there now, plus K0 K1. 
So, the denominator if you see here, it is third order one.  
 
Now, this 1 plus Tn T1 S and 1 plus into 1 plus this, this zero, this we can take care of like 
the current transfer one, transfer function by appropriately giving a delay to the reference 
input. So, the transfer function which has to be optimised for finally to be optimised for 
our closed loop control is this one. Because this zero, this we can eliminate the effect of 
this one by giving a filter, the input is filter using this time constant, using these two first 
order filters. So, we can take take care of this one. 
  
Now, let us take the denominator. Now, again let us go back to our optimisation. If you 
see here, the optimisation taken we know it, for the second order system, let us go back 
to the pervious one; for a third order system, the F j omega if it is b0 plus j omega b1 by 
a0 plus j omega a1 plus j omega square a2 plus j omega cube a3. So, one condition is at 
from the numerator. But here, we are we are not worried about in our system numerator 
because that we are taking care of by using a filter to the input, same like that our current 
controller. So, it is b0 is equal to A0, b1 is equal to A1. 
 
Then finally, if you take the mod F j omega in our front end ac to dc controller, we got 
this equation; a0 square omega square A1 square divided by a0 square plus omega square 
into a1 square minus 2 a0 a2 omega raised to 4 into a2 square minus 2 a1 a3 plus omega 
raised to 6 a3 square. So, we will be using to make the modulus as close as possible to 
one. For wide frequency range, we can eliminate this one, we can eliminate this one also 
using the condition a1 square is equal to 2 a0 a2, a2 square is equal to 2 a1 a3. Now, lets us 
use this one, for our compensation. So, let us write down this condition and our transfer 
function and then try to do the speed loop. 
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This will be e equal to omega F (s) divide by omega R (s), omega R (s) we are passing 
through a filter. So, this will be 1 plus Tn S into 1 by 1 plus T1 S. Then the final transfer 
function will be Kn RA by Km K2. Let us call this one as a constant K0 divided by S cube 
Tm Tn delta plus S square Tm Tn plus so this K0, K0 K1 Tn plus K0 K1. Now, the condition 
for optimisation we got. What is the, what are the conditions? We will write it here.  
 
That is one condition is a1 square is equal to 2 a0 a2. Now, a2 square is equal to a2 a1 a3; so 
this shows, from this one, a1 square which is a1? This is, S time is missing here. There is 
an S time here sorry there is an S time here, there is an S time here that we forward right, 
S time is here. So, a1 is the constant of the S time. That is K0 K1 Tn. So, if you see there, 
K0 square is equal to 2 K0 K1 Tm Tn and a2 square S square time that is Tm Tn that is Tm Tn 
square is equal to 2 K0 K1 Tn square Tm into delta. 
  
So now, from this one, we can find out our Tn. That Tn we can substitute it here. Then 
from that K0, we can find out Kn. So, if we do it simplifying, Tn will be we will get Tn is 
equal to 4 delta. Delta is equal to 4 into 2 sigma plus T1 and we know sigma is equal to 
sigma is equal to convert or time cons the current filter. So, this is will be equal to 4 into 
2 Tt plus 2 T2 plus T1, this is our Tn. Then substituting this one, finally our K will be Kn 
that is our PI controller, Kn, P gain, Kn will be Tm Km K2 divide by 2 K1 RA into delta. 
This will be the Kn. So, we got Kn; optimisation, we can get Tn. 
 
Now, let us substitute this one back to the equation and simplify it. The system will be 
the final, our omega, let us go to the next page. 
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Final omega (s) feedback divide by omega (s) R will be of the form 1 by that means this 
omega R is after filtering through 1 by our pervious numerator, numerator means 1 by Tn 
S into 1 plus, 2 filters of 1 by Tn S into 1 plus T1 S or we can have another filter 1 by 1 
plus T1 plus Tn also is possible. Now, this will be finally of the form 1 by 1 plus 4 s delta 
plus 8 s square delta square plus 8 s cube delta cube. So, this one, what do the transient, 
this is the Laplace domain; what is the transient response of this one with a for a unit 
step? 
 
We can find out the output for a unit step omega t will be of the form 1, we can find out e 
raised to minus t by 2 delta minus 2 by root 3 e raised to minus t by 4 delta into sine root 
3 by 4 delta into t. So, if you plot the response, see let us take here t by delta as the x 
axis. So, this is our 100%. So, this will be approximately if this is the 100%, this will 
come within 2% of our final value, 2% of the final value that is the settling time, 
approximately 13.3 delta settling time and this will be approximately 7.6 delta and we 
get an overshoot of approximately 8.7%. So, this a good way of we have optimised the 
system. This is called the modulus hugging.  
 
Now, there is another way, also it is called symmetric optimisation by computation. This 
is called this type of optimisation literature is called symmetric optimisation by 
computation.  
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We can write it here, symmetric optimisation by computation. So, this can also be done 
also using graphical methods. That also we will study so that we can use these 
techniques appropriately whenever it is needed. Let us go to the next one. 
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Symmetric optimisation by graphical methods: so the pervious transfer function that is 
omega feedback (s) divide by omega R (s) we got it like this that is 1 plus 4 S delta T 1 
plus 4 S delta T that is 8 S square delta square plus 8 S cube delta cube and previously if 
you know, we we had this denominator here. The denominator was what was the 
denominator? The denominator was we will write it differently, that was 1 plus Tn S into 
1 plus T1 S and I told effect of this one, we can remove by reference we are, the 
reference we are passing through this filter. That is if you have the reference is here, we 
will pass through two filters of the form; 1 by 1 plus Tn S, 1 by 1 plus T1 S and Tn we got 
4 delta.  
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So, this also can be approximated with one prime constant; summation we can take it, 1 
by 1 plus Tn is equal to 4 delta, 4 delta plus T1 into S so that a filter of the time constant 
of 4 delta plus 1 omega R if edit and give it here. Then effect of this one; this will be 
cancelled and final transfer function will be like this and we have how the response of 
for this one, found out using the computation method. Now, we will talk about 
symmetric optimisation by graphical method.  
 
See, if you see the close loop controller, let us go back to the close loop control system.  
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See, you have the reference coming here, reference; there is our reference, then we have 
the controller, then the controller or plant transfer function, then our feedback is coming 
here. So, what we want? Let us find out the open loop gain. Open loop gain means we 
are removing this one. For ideal control, this feedback what is coming here, it should 
always track the reference. Also, since it is going to control and plant which has 
frequency depend elements and reference also varying with frequency; so feedback 
signal, you should not give any phase shift here.  
 
Even if with, it is gain, same gain comes here and if it gives a phase shift of minus 180 
degree, negative feedback become positive feedback. So, the loop gain once it comes for 
unity gain, this phase difference should be should not be close minus 180, it should be 
far away from 180 degree. So, if you can do that also that is also another optimisation. 
So, let us take open loop gain. So, let us take our transfer function. Go back to our 
transfer function, older transfer function and find out the open loop gain. 
  
 
 
 
 
 
 
 

8 
 



(Refer Slide Time: 33:46)  
 

 
 
Yes, let us write down the block diagram once again that is Kn into 1 plus Tn S divided 
by Tn S, then our current controller loop that is 1 by K2 by 1 plus 2 sigma S. So here, 1 
by 1 by K2 current reference and finally RA by Km divided by Tm S, here is our omega S 
feedback, then our filter. Filter is equal to K1 by 1 plus T1 S. 
  
Now, to find out the loop gain, we are breaking here. So, let us find out when the signal 
comes here, what is the gain and what is the phase shift. So, phase shift when it when it 
becomes phase shift for the unity gain, see when it comes here, let us find out the loop 
gain and the phase shift here. So, when you do that one, let us draw the Bode plot first. 
Let us find out the loop gain first; then from the loop gain, we will draw the block 
diagram that is open loop gain.  
 
So, open loop gain will be that is F0 S is equal to Kn RA K1 by Km K2 into 1 plus Tn S 
divide by S square Tn Tm into 1 plus 2 sigma S into 1 plus T1 dash. So here also, we can 
use the approximation; delta is equal to 2 sigma plus T1 and this one Kn RA Km by K2 this 
one, let us call as K4. Then the final transfer function will be that is open loop gain F0 S, 
S will be equal to K4 into 1 plus Tn S divide by S square Tn Tm into 1 plus delta S. This 
we are trying to find out another way of optimising the loop by choosing Kn and Tn using 
the symmetric optimisation using graphical method. So, this is the open loop gain.  
 
Now, from the control system point of view, the system will be stable, this open loop 
gain. At the unity gain cross over frequency, it goes by minus 20 db per decade and at 
the gain cross over frequency if we can have a sufficient phase margin, the system is 
stable, we can stabilise the system. So, let us write down the, let us draw the Bode plot of 
this one. 
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Again, the loop gain, this will be equal to K4 divide by S square Tn Tm into 1 plus delta S 
and numerator we have 1 plus Tn S. Now, if you see here; there is a 0 at Tn, there is a 
pole at delta S. Now, we want 20 db per decade. So, if you F0 j omega, if you place Tn 
here, 1 by Tn and 1 by delta, with respect to 1 by delta; see upto here, it is minus 40 db 
per decade because of the S square, then the moment the zero comes, it will shift to till it 
reaches here 20 db per decade. Then again, go minus 40 db because of this effect. 
  
So here, the effect of pole will come. So here, minus 40 db per decade, this is minus 20 
db, this also minus 40 db per decade. So, we have to choose Tn such that now if you 
draw the phase margin, see minus 40 db per decade, so upto, upto this point, slowly it is 
minus pi. Then because of the affect of this one, it will slowly go. Again, the effect of the 
zero comes and finally again it will go to minus db. 
  
So, we choose the Tn such that at this point, we will have the maximum phase margin. 
This is called the phase margin. So, we should have the maximum phase margin, phase 
margin at this gain crossover. Now, we have to design our Tn such that we have, it 
should cross the gain crossover frequency, this axis at minus 20 db per decade and you 
should get sufficient margin. So, this is in log scale. 
  
So, let us take, so usually we will design such that it will be the, usual practice is to 
choose the crossover frequency omega C that is omega C here at the geometric mean of 
the two carrier frequencies. That means let us write down that one. Let us go to the next 
page. 
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The usual practice is to choose the crossover frequency omega C, our omega C at the 
geometric mean of two corner frequency. This is omega C is we are playing to place at 
the geometric of the two corner frequencies, two corner frequencies. Now, from our 
pervious example, the Tn we can approximately choose as, that 1 by Tn, Tn is equal to 4 
delta; we can use that one here itself also, Tn is equal to 4 delta. So, if you choose 1 by Tn 
is equal to 1 by 4 delta, so we already choosing this, approximately. Usually, this 1 by Tn 
should be away from the 4 del 5 to 6, that margin. 
  
So, if you take this one, 1 by Tn is equal to approximately 1 by 4 delta, then let us find 
out using this one, let us substitute this one in the loop gain and let us find out what is the 
phase margin we are getting and based on this one at the gain cross over where the gain 
will be 1, let us find out what is Kn and with that Kn let us find out what is the phase 
margin we are getting. 
  
So, if you are not getting the proper ah phase margin, again we will try to adjust this Tn 
with respect to delta, 1 by Tn with respect to 1 by delta. So then, we will see, so this is a 
trial and error. So since we have already got a Tn value from the previous thing, we will 
use that one and we will see whether we are getting the correct one. This, we will study 
in the next class.  
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