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Welcome to first lecture of module 4 of this course, called game theory and economics. We 

are starting with a new topic in this lecture. This topic is called mixed strategy Nash 

equilibrium. 
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To understand what is mixed strategy Nash equilibrium, let us try to recall what was the basic 

idea of Nash equilibrium? The idea, that we have developed and discussed so far, was that 

when there are a set of players and these players are taking actions, a Nash equilibrium is a 

situation where players action is optimal, given the actions taken by other players. 

Now when I am talking about one player is taking an action, which is optimal, it is not the 

case that this person is taking action once in a life time and that is the end of it. If that is the 



case, if the game was played just once, then a player has no way to understand what actions 

are going to be taken by other players. It is because, if you remember, the game is a 

simultaneous move game. So, in the game, the actions are taken simultaneously. And if the 

actions are being taken simultaneously, a player cannot know before that whether a particular 

action is his optimal or not optimal. 
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To justify the fact that if a player knows that his action or her action is optimal, the way we 

visualize it. In the following sense that this game is being played over and over. But suppose I 

am talking about player 1, then it is not the case that the person who is playing in player 1's 

position, remains the same. Rather behind player 1, there is a set of players and all these 

players, in this set of players, have the same kind of preference and have the same kind of set 

of actions. 

So each one of them can be qualified to be player 1. Similarly, there is player 2, and behind 

him also there is a set of players. What happens is that in each play of the game, 1 person gets 

selected. Here also one person is getting selected and these 2 people are playing the game. 

This selection is made randomly. As this game is being played many times, so whenever there 

is the turn of any particular player to be in the position of player 1, this player has known 

what has been the history of the game before that. He knows that the player, who has been in 

player in 2's position, has been playing a certain action. And the person, who has been in 

player 1's position, has been playing a particular action. And these actions are stable. 



Stable, in the sense, that they are remaining the same – steady state kind of actions. Now, two 

actions – the pair of actions – can be steady state, they can remain the same, only if they are 

optimal to each other. Otherwise, if A is not optimal with respect to B in the next play of the 

game, the player who is responsible for A’s action will change his action because that is not 

optimal, given that the other player is playing B. 

That is why we say that Nash equilibrium is a stable steady state situation, given the same 

pair of action is being played over and over again. Suppose this is the Nash equilibrium – this 

pair of action which has been played before and since this has been played before, whenever 

player 1 comes to play, this action or the player who is in player 1's position comes to play 

this action, he knows that player 2 is going to play a2 star. And since he knows that a2 star is 

going to be played, his optimal is a1 star. 

He continuous to play a1 star and the same logic holds for player 2 or whoever the player is in 

player 2's position. That is why we say that Nash equilibrium is a stable steady state outcome. 

Now, this was the case so far. In mixed strategy Nash equilibrium, what we shall do is that we 

are going to change the story a little bit and make it a more generalized case. Generalized 

case, in the sense, that here, in mixed strategy Nash equilibrium for any particular player, it is 

not the case that his action, particular action, remains the same. But the pattern of actions will 

remain the same. What is meant by pattern of actions? 
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Suppose a set of actions of player 1 – a1 a2 am. In Nash equilibrium, what he has been doing is 

he was taking this particular action, which is ak star. So ak star is a part of the Nash 

equilibrium profile. 

Now, ak star is going to be played again and again and the same action is being repeated by 

player 1. Instead of that, can we generalize it and say that it is not the case that ak star is going 

to be played by player 1 again and again. But what he is going to do is that his probability 

distribution over the action set is going to be constant. It is not that the action is remaining 

constant but the chances that the actions have of being played will remains constant. 

It may happen that player 1 has this action set – a1 and a2. These are the two actions. It is not 

that a1 is going to be played, and it is not that a one is going to be played. But suppose a1 is 

going to be played with probability 1/3 and a2 is going to be played with probability 2/3. And 

these probabilities are going to remain constant. 

If they remain constant for each player, whatever the probabilities are for each player, then 

we call that a Nash equilibrium. It is a generalized concept. It is generalized in the sense that I 

can have the probability to be 1 and 0 also. In that case, I get back to the original concept of 

equilibrium – the concept of equilibrium that we have been discussing so far – where one 

action is going to be played again and again. 

The concept of equilibrium that we have discussed so far is a special case of this generalized 

idea of Nash equilibrium, where the pattern of actions, the probabilities that the actions have 

in a particular play of the game to be played, remain the same. So that is the general case. The 

fact that a particular action is going to be played with probability 1, that is the special case of 

the generalized case. 

This is the idea of mixed strategy Nash equilibrium. What we are going to do now is that this 

idea of Nash equilibrium or mixed strategy Nash equilibrium can be interpreted in this way 

that I have just said – that a particular player attaches suppose probability one-third to his first 

action and two-third to the second action, he has only these two actions. This can also be 

interpreted in the following way that this population of player 1, out of it, 1 third of the 

population. 

So, this is an alternative interpretation of the mixed strategy Nash equilibrium. I have not 

vigorously defined what is mixed in Nash equilibrium so far. I am just motivating the idea. 



This is the alternative idea of mixed strategy Nash equilibrium. If you remember player 1 – 

the identity of player 1 does not remain constant – the person, who is being played, who is 

playing the game in place of player 1, is selected randomly from a population. 

Instead of saying that this player, who is playing the game in place of player 1, is playing a1 

with one-third and a2 with two-third, we can also say that of the total population behind 

player 1, one-third of that population is playing a1 with certainty, and two-third of the 

population is playing a2 with certainty. 

In this case, since the players are being picked up randomly from the population, the 

probability that a1 will plays, remains one-third, and the probability that to a2 is going to play 

is two-third. 

There are two ways to look at the fact that a players are not taking any action for certainty, 

but for what is known as randomizing. So this is called randomization. Instead of playing any 

action for certainty, a player can be allowed to attach a probability less than one to a 

particular action. 
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This is the basic starting point of mixed strategy Nash equilibrium. We shall start with one 

example of mixed strategy Nash equilibrium to motivate the idea further. This is the familiar 

matching pennies game. If you recall, the game did not have any Nash equilibrium in the way 

we define Nash equilibrium in the previous sections. Incidentally, the way we define Nash 



equilibrium in the previous section, in terms of taking an action for certain, is called pure 

strategy Nash equilibrium. 

So, this matching pennies game has no Nash equilibrium in pure strategy. What we are going 

to show is that if we consider mixed strategy – if you consider the fact that people can 

randomize – then this game has Nash equilibrium. At player 1, will play H with probability 

half T with probability half, player 2 will play T with probability half. 

That is what we are going to show. If these are the probabilities that player 1 and player 2 

attach to actions H and T, they have two actions, then this game has a Nash equilibrium at 

these probabilities. 

We are further going to show that this is unique, that is, this is the only Nash equilibrium. 

This is the only mixed strategy Nash equilibrium. There is no other mixed strategy Nash 

equilibrium in this game. 

To prove the first part that this is a Nash equilibrium, let us see what we need to do. For 

example, player 2 is playing H with half and T with half, we are going to show that players 1 

is playing H with probability half and playing T with probability half, is optimal. Similarly 

given player 1 is playing H and T with half of where one to show that player 2's choice of 

probabilities that is half and half is optimal. 
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If we can show that this is Nash equilibrium. Instead of half and half, let us suppose that 

player 1 plays H and T with probability p and 1 minus p; and 2 plays this actions with 

probabilities half and half. Now, if this is the case then what we are essentially saying is the 

following – he is playing this actions with probability half and half; and he is playing with 

these probabilities. 

Now, in this game, there are basically two sorts of outcomes. In the sense that what happens 

at the end of the day – either player 1 gets 1 rupee or player 1 loses 1 rupee. Now, if I call that 

this event of player 1 getting 1 rupee is the event that player 1 likes, then what is the 

probability that player 1 gets 1 rupee. 

The probability that 1 gets 1 rupee. This can happen under two circumstances – if the result is 

H H that both the players are showing heads to each other; or if the result is T T both the 

players are showing tails to each other. 

These two events that H H and T T are mutually exclusive – if one happens, the other cannot 

happen. So I can write it as H H plus T T. What is the probability that H H has happened? It 

means that player 1 has chosen H, player 2 has also chosen H. 

Now, these are two probabilities. The probability that player 1 chooses H is p. And the fact 

the player 2 has chosen H, which is half. These are independent events. Now, if these are 

independent events then the probability that H and H has happened is equal to probability that 

player 1 has chosen H, multiplied by the probability that 2 has also chosen H. 

This is p multiplied by 2 plus 1 minus p multiplied by half, and this is simply half. So the 

probability that player 1 gets 1 rupee is half. What is the probability that player 1 loses 1 

rupee? Under two circumstances – if the result is H T or if the result is T H. This or this. And 

again like the logic before, what is the probability that H T is occurring? It is given by p 

multiplied by half, and this probability T H is 1 minus p multiplied by half. So we have got 

half. 

Now, the interesting thing to notice here is that irrespective of p, the probability that player 1 

gets 1 rupee or loses 1 rupee remains half. It is independent of p. So whatever p player 1 

fixes, whatever p, which means that probability of showing H, player 1 attaches the 

probability that he gets 1 rupee or loses 1 rupee, that remains constant at half, which means 

that any p is optimal. 



Optimal, in the sense, that player 1 always likes to get 1 rupee, so he would always like to 

have as much probability attached to this event as possible. But here any p is optimal because 

this is independent. This half is independent of p. And if any p is optimal, then p is equal to 

half is also optimal. 

Now, this was from the point of view of player 1. The similar logic can be also applied for 

player 2. Here, we are going to look at the game from player 2's point of view. To do that, let 

us suppose that player 1 attaches half and half probabilities to H and T, and player 2 attaches 

given 1 minus q to H and T. 

Now, in this case, probability that player 2 gets 1 rupee in these circumstances. And what is 

the probability of that? Half q plus half 1 minus q, which is half. Similarly one can show that 

the probability of p loses 1 rupee is also half. I am not going to show this last one, but it is 

easy to show that. It means that given player 1 is playing H and T with half and half, the 

player 2's probability of getting 1 rupee or losing 1 rupee remains fixed at half. It means that 

player 2 can attach any probability to H and T and any such probability will be optimal. 
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So, any q is optimal. So q is equal to half, is also optimal. What we have derived is the 

following – given q is equal to half, p is equal to half is optimal; and given p is equal to half, 

q is equal to half is also optimal. And therefore, p is equal to half, q is equal to half, is Nash 

equilibrium. That is the proof that in mixed strategy, if we consider mixed strategy, if we 

consider the people can randomize, then in matching pennies game, there is a Nash 



equilibrium, where p is equal to half. That is, probability of player 1 playing H is equal to 

half; and player 2 playing H is also equal to half. This combination of probabilities is a Nash 

equilibrium. 

Now, the next part is uniqueness – that this is the only Nash equilibrium in this matching 

pennies game. To prove that this is the only equilibrium, what we need to assume, which is a 

very simple assumption, is that any player will like to maximize the probability of his getting 

some higher payoff then not getting some higher payoff. For example, if someone is getting a 

and b, under two circumstances, and suppose these are the probabilities, then if p is greater 

than q, this is a probability distribution one. 

Given that a is preferred to b, the probability distribution where a is getting higher probability 

will be preferred by the player. By the way this probability distribution of occurrence of these 

events is known as lotteries. 

These are lotteries. It is a technical name. A name that we are going to use very often. Now 

this is a kind of innocuous assumption but we are going to stick to this assumption. For 

proving uniqueness, this assumption is required. 

Let us suppose, in general case, that the probabilities attached to this actions by these 2 

players, or p, 1 minus p ,q, and 1 minus q. This is the general case. 

Like before, what is the probability that player 1 gets 1 rupee? This again occurs if H H 

occurs or T T occurs. And the probability of those two occurring are p q plus 1 minus p 1 

minus q. And if I simplify this, this is what I get – 1 minus q, 2pq, and minus p. 
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The probability that player 1 gets 1 rupee is 1 minus q plus p multiplied by 2 q minus 1. What 

is the probability that 1 loses 1 rupee? So this will be given by if this happens or if this 

happens. And the probabilities are p multiplied by 1 minus q, and q multiplied by 1 minus p. 



(Refer Slide Time: 32:01) 

 

(Refer Slide Time: 26:28) 

 



(Refer Slide Time: 32:53) 

 

Now, remember that what player 1 is trying to do. Player 1 will like to maximize this 

probability. The fact that player 1 is getting 1 rupee, that is, going to be maximized. The 

probability of that event is going to be maximized. Now, in this case, let us recall this. 
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If q is supposedly not equal to half because if q is equal to half, p is also equal to half, and 

that is Nash equilibrium. But suppose q is less than half. If q is less than half, then this value 

becomes negative. And if this is negative then what should player 1 do? Player 1 should 

attach p is equal to 0. Then, player 1 will attach probability p is equal to 0 because this is 

negative. These probabilities are to be maximized. So p will be said to be equal to 0, which 

means T will be played with certainty by player 1. 

Now remember, if T is being played with certainty with by player 1, what should player 2 do? 

Then player 2 will play H with certainty. In that case, q is becoming equal to 1. So we started 

with q less than half, we have seen that if q is less than half then p is equal to 0 and if p is 

equal to 0 then q becomes equal to 1. It no longer is less than half. 

So we do not have any Nash equilibrium, if q is less than half. So, no Nash equilibrium. 

Similarly, if we take q is greater than half, then what will happen is that this is positive, and p 

becomes equal to 1. And if p is equal to 1, then what happens? 
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Player 1 is playing this with certainty. In that case, player 2 will play T with certainty. It 

means that q is going to be equal to 0. So once again, we have the familiar thing that if we 

start with q greater than half, the optimal response from player 1 is that setting p is equal to 1, 

and if p is equal to 1, then q becomes equal to 0. 
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We again we do not have any Nash equilibrium here. It means that if we take any q, which is 

not equal to half, we do not have any Nash equilibrium. Similarly we can show, that player 

2's probability of gaining. One can show that there is no Nash equilibrium, if p is not equal to 

half. 

What we have shown is that there is no Nash equilibrium. The only Nash equilibrium there is 

in this game, where p is equal to half and q is equal to half. The fact that this is a Nash 

equilibrium as we have just shown before. And now, we show that this is a unique Nash 

equilibrium – there is no other Nash equilibrium. So that is that. 

Now to recapitulate what we have done. Let us recapitulate and go to the next step. Here, we 

are considering the fact that players have different actions and they randomize. They do not 

play any action with certainty. And if they do not play actions with certainty, then the 

probability that is any action profile is going to be played remains uncertain – it may have a 

probability less than one and greater than 0. 

For example, let us take the following game – so this is a1, a2, b1, b2. Let us suppose, player 2 

is playing this action with certainty. So this is going to be played. 

Now, had player 1 played a1 with certainty, we know that the outcome would have been, let 

us suppose, a1 b1, and the payoff from this is c1. Now the deviation that player 1 can take is he 

can go to a2, and then the outcome becomes a2b1, and the payoff becomes c2. 



So, player 1, when he is deviating, needs to consider between c1 and c2. This is not a very 

difficult task. This was the case of pure strategy. But when we have these two actions by 

player 1 – he has only two actions to choose from – and he is considering deviation from this 

action a1, then there can be infinite number of deviations because he can randomize.  

These are the two actions. Suppose the probabilities are p1. Let us not write p1, let us call this, 

1/10, and this is 9/10, which can be half. So, there are infinite numbers of such possibilities. 

If there are infinite numbers of such possibilities, then player 1 has to compare all this 

possibilities – the payoff from all this possibilities – with what he is getting at present, which 

is c1. 

So, the task becomes little difficult. It becomes even more difficult, if there are suppose three 

actions. Suppose I have another three – another action. Now, previously there were just two 

actions to choose from. Now I have another action a3. Previously, it was easy to see if I do not 

have a3. Suppose, if c1 is more than c2, then which one will be more preferred. All these 

lotteries – suppose this is p1, this p2, etc. That lottery will be most preferred by player 1, where 

the value attached to this a1 is the highest. Because from a1, he is getting c1, which is higher 

than c2, which he is getting from a2. 

So, whenever the probability of occurring of a1 b1 is there, that probability will sort to be 

maximized by player 1, if there are only two actions a1 and a2. But if there are three action, 

the story becomes more complicated. Then, it is not that simple rule of thumb that you attach 

higher probability, where the payoff is higher. The story becomes even more complicated, if 

player 2 is not playing this with certainty, but, suppose, he is also randomizing. 

In that case also, this maximization of probability attach to a1 is not going to be optimal. It is 

because I do not know whether that action is going to be played with certainty and the 

outcome will happen with certainty. So if I have more than one two actions, or more than two 

outcomes, then the lottery or the preference of lotteries becomes a little difficult to figure out. 
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It is like this. This is the preference of a player – a is preferred over b. And the model that we 

had -- if there are two outcomes, then if p is greater than q, and these are two lotteries – 

lottery 1 is preferred over lottery 2. Suppose, I have three outcomes and I know the 

preference ordering of the outcomes. Suppose I have three outcomes – a, b, c. To have a 

concrete idea, I am comparing between two lotteries. This is one lottery and this is another 

lottery. 

Now can we say for certain, whether 1 will be preferred to 2, or 2 will be preferred to 1. We 

cannot. If we do not have any further information regarding players preferences. Remember, 

here the previous rule of thumb was that if you prefer a, you prefer that lottery where a’s 

probability was highest. Here, a’s probability is one-third, which is greater than 0. 0 is 

occurring here. But even then it may happen that a player chooses 1 over 2. It may happen 

because the player may like to have a situation where this middle one is occurring with 

certainty. 

Because in the last one, there is a high chance that the last c, which is the least preferred, 

outcome occurs with quite high probability – two-third. So, it is very probable that any player 

will like to have a over b. b lottery will not be preferred. a will be preferred, where b is 

guaranteed, where a and c are not probable. 

If I have three outcomes or more than three outcomes, unlike in case of two outcomes, I 

cannot know beforehand that which lottery will be preferred by a particular player. In this 



case, the lotteries are going to be important. For example, suppose I am talking about player 

1's payoff from a game, which is a very simple game suppose. Why the lotteries are 

important? The reason is the following – if player 2 plays this action with q, and this action 

with 1 minus q; player 1 is playing this action with p, and this action with 1 minus p, then 

what is the payoff of player 1? 

It is given by p q multiplied by c 1, plus p 1 minus q multiplied by c 2, 1 minus p q multiplied 

by c 3, 1 minus p 1 minus q multiplied by c 4. 

These factors – p q, p 1 minus q, 1 minus p q, 1 minus p, 1 minus q – are the probabilities 

attached to these four outcomes. And these are then the lotteries attached to the outcomes. so 

these are the probabilities p q. 
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They are similar to this p here or this p here. So, if I have more than two outcomes, then how 

does one figure out which lottery one prefers over other lotteries. For this, one assumption 

that we are going to take is the preference of the players are von Neumann Morgenstern, 

which means that there is a particular kind of preference, which is called von Neumann 

Morgenstern preference. The players' preference obey that property – the property of von 

Neumann Morgenstern preference. And what does it mean? It means that if a, b, c are the 

outcomes and p1, p2, p3 are the probabilities attached to them, then utility are the payoff from 

a b c with the probabilities attached p1, p2, p3 is the expected value of the payoff functions 

from the certain events. 



So this is going to be p1. This and this small u's – these are the payoff functions defined over 

deterministic outcomes. These are also called Bernoulli functions, Bernoulli payoff function, 

or Bernoulli utility function. 

If the preference of the player satisfy von Neumann Morgenstern preference, then it is 

possible to rank the different lotteries that the people face. So, if people have a particular 

player, facing two lotteries, suppose one is p1, p2, p3 and another lottery is there where the 

probabilities are different – q1, q2, q3 . Then, I apply this formula over this lottery also. And I 

get this. Then it is easy to compare. Because this is a number and this is again a number. If 

this number is higher than this number, then probably this lottery is preferred to this lottery 

and vice versa. If this number is higher than this number, then this lottery is preferred to this 

lottery. And if these two numbers are equal, then the player is indifferent between these two 

lotteries. So, this von Neumann Morgenstern preference pattern gives us a clue how to 

compare the preference of players over lotteries. Now, it is by no means a sacrosanct kind of 

assumption that people’s preferences are going to satisfy von Neumann Morgenstern 

preference. It may very well happen that they do not satisfy von Neumann Morgenstern 

assumption – the characterization of preference that these are two economists – von 

Neumann and Morgenstern. Von Neumann was a computer scientist first, who worked with 

Morgenstern, an American economist, and they propose this kind of preference pattern to 

deal with cases of uncertainty.  
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Because we have lotteries here, so uncertainty, where the things are not very certain, there are 

probabilities attached to an event. Then we have to use some criteria or how to judge peoples' 

preference and this is a clue which has been proposed by von Neumann and Morgenstern. 

This also known as expected utility theory. 

Now, before we finish this lecture, let me take you through what we have been discussing in 

this lecture. We have started the discussion about a mixed strategy Nash equilibrium. First, 

we discussed and dealt with the fact that people can randomize over actions. That is sort to be 

captured by this mixed strategy Nash equilibrium, unlike the case of pure strategy Nash 

equilibrium. Then, we discussed about an example in case of matching pennies. In case of 

matching pennies, we have seen that there is a single mixed strategy Nash equilibrium, where 

the probabilities are half and half. And then we started the discussion about how to rank 

lotteries, which lottery will be prefer to other lotteries, if we have more than two outcomes. 

Talking about that we have introduced the idea of von Neumann Morgenstern preference; we 

shall continue from this in the next lecture. Thank you 

Questions and Answers 
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What is meant by stochastic steady state or mixed strategy Nash equilibrium? 
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To constrict steady state, this is the case where players can play actions with probability less 

than 1. They randomize or let us say - they can randomize, they may not randomize - 

randomize their actions. Now here, if the players play the actions with the same probabilities 

and that is optimal -- same probabilities in each period and that is optimal – then we have 

stochastic steady state. 

So, here what is not there is that it is not required that the players play the same action every 

time. What is required is that they play the action with the same probabilities each time. And 

that is called as stochastic steady state. Stochastic means related with probability, since the 

probabilities are remaining steady, so we are calling it a stochastic steady state. And such 

stochastic steady state, if it prevails, will be called a mixed strategy Nash equilibrium. 
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Show that the BoS game has a mixed strategy Nash equilibrium at p two-third q one-third. 

Let us remember the BoS game 

We have to prove that one is assigning two-third, one-third, and two is assigning one-third 

two-third. Two-third actions b and o and that is mixed strategy Nash equilibrium. Yes, how to 

prove? 
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Given q is the probability with which player 2 plays Bq is one-third. Expected payoff of 1 

from B is given by simply two-third and expected payoff of 1 from 0 is similarly given by 

two-third. 

For player 1, it does not matter what probability he attaches to B or o, any deviation between 

B and o will be optimal. Hence two-third 1 third is also optimal. This is one part. Secondly, 

given p is equal to two-third, expected payoff of 2 from B is how much? It is given by two-

third. And expected payoff of 2 from o is again two-third. So they are equal. Any deviation is 



of probabilities between B and o is optimal; therefore, one-third, two-third is optimal for 2. 

Therefore this is Nash equilibrium. Thank you. 


