
Computer Aided Decision System  

Industrial Practices using Big Analytics 

Professor Deepu Philip 

Department of Industrial & Management Engineering 

Indian Institute of Technology, Kanpur 

Professor Amandeep Singh 

Imagineering Laboratory Indian Institute of Technology Kanpur 

Lecture - 15  

Database Normalization 

Good afternoon everyone. Welcome to at another lecture of the Web Based Decision Support 

System course for the decision makers and the academicians, practitioners, sub product stuff. 

So, we have been discussing on different aspects of DSS system. 

(Refer Slide Time: 0:35)  

 

So, today if you look at it quickly as a quick recap, we looked into DSS and we have four sub 

part of DSS, one is Database Management System (DBMS), then Model-Based Management 

System (MBMS), then Knowledge Base Management System (KBMS) and User Interface 

Management System (UIMS). And we are taking a brief look into all of them. And now we 

are looking in depth into Database Management System.  

So, we studied what say Data, Database. We also looked into what is called as an Entity 

Relationship Diagram. We saw what is the Schema. How to translate the three-layer 

architecture? And then we studied what is the concept of Primary Key and Foreign Key. And, 

then we also studied what we call as how to translate from an ER diagram to a Tables. And, 

some brief introduction of SQL, we have gone through these many aspects of it.  



So, now all these aspects are being completed from our side. Now, today we are going to look 

into what they call as a new thing called ‘Normalization’. And also, we will try to continue to 

learn something about ‘MySQL’ and some commands of MySQL. And finally, we will try to 

wrap this whole lecture out with introduction to ‘Big Data’ and the remaining aspects of the 

Big Data will be taken over by other instructor Dr. Amandeep Singh. And, once this is done I 

will move towards User Interface Management System or Model-Based Management 

System, depending upon how much time and other things that we left out. 

 Remember, all these are supposed to give you the brief introduction to the course and make 

you familiarize with the ideas and the applied side the putting it into practice, learning it to 

how to do it on a server side will all be done as part of the advanced course which will be its 

subsequent to this one.  

So, today we are going to learn the topic ‘Database Normalization’ and it is very important 

topic, especially when it comes to DSS because the DSS uses Data plus Models plus Decision 

Maker and that translates to Business Decisions. So, DSS support this all the three, and this 

which we create what we call as a Business Decision, which will have a financial impact on 

the organization. 

(Refer Slide Time: 3:33)  

 

So, let us see what is Normalization, the concept of Normalization. So, there are many 

definitions available. And again, from a DSS Stand Point is what we are going to talk about, 

what is the, the Normalization and the concept of Normalization? So, the simplest definition 

for this: 



 A logical design method that minimizes, data redundancy, data redundancy and 

reduces database design flaws. So, fundamentally, it is a logical design method. The 

aim is to minimize. It has to minimize two things what is it number one is minimize 

the data redundancy. And also, number two is to reduce the database design flaws. 

The second aspect is how to reduce the database design flaws. So, what does it entails 

to, there the question is, what does it entails with or what are the major steps 

associated with it? So, the first part is:  

 Consist of applying various “Normal” forms to the database design. We will see what 

is the “Normal” forms. So, the first thing is you have Multiple “Normal” forms that 

are available (quote unquote normal forms) and we take these “Normal” forms and 

applied to the database design in a sequence.  

And why do we apply “Normal” forms? The reason is: 

 The “Normal” forms break down large database tables into Smaller Subsets. So, as I 

said earlier, it is a logical design method. And there are two aims, number one is to 

minimize data redundancy, that is the first goal and number two to reduce the 

database design flaws. Those are the two goals of the Normalization.  

So, what does it consist of, or how do you achieve this? What do you do is, you keep on 

applying, you consistently apply various normal forms. We will talk through what are 

different normal form. First normal form, second normal form, that is so many normal forms. 

We take these normal forms and we apply it to the database design.  

And why do we do this? Why do we make these things? Because these normal forms help us 

in breaking down large database tables into smaller subsets, so that it can be managed better. 

The aim is to manage this database tables better because once you have a smaller table, then 

it is easy to manage and better so that you can also reduce redundancy and reduce the design 

flaws. 



(Refer Slide Time: 7:32)  

 

So, without further delay, we go into what we call as the First Normal Form. Usually 

represented as 1NF.  

 What comprises/constitutes of First Normal Form? So, the first one, the initial thing 

is:  

1) Each attribute must be atomic. So, atomic is an interesting word that we need to 

understand, what does it means? So, it means two things,  

 No repeating columns within a row of the table. So, you cannot have a column 

repeating. So, first criteria is that, in every row you cannot repeat the same column, 

thing cannot be repeated. 

 No Multi-Valued Columns in a Table. So, you cannot have repeating columns and 

you cannot have Multi-Valued Columns. So, this is what it amounts to be. So First 

Normal Form, each attribute must be atomic. Atomic means there cannot be any 

Repeating Columns and there cannot be no Multi-Valued Columns.  

What is the goal of the 1NF?  

 1NF (First Normal Form) aims to simplify entity attributes. So, attributes can think 

about as Columns can simplify attributes.  

So, why do you need to simplify attributes? Why Simplification is important or why do we 

need simplification?  



 Make (database) queries easier (or) queries become easier. Our aim is to make the 

queries easier. So, queries become faster, quicker and you can actually query the 

database without too much of confusion.  

So, that is, why is the need of First Normal Form. Again, as I said earlier what comprises or 

constitutes are the First Normal Form or fundamental question and the rule is that each 

attribute mast be atomic. Atomic means No Repeating Columns, No Multi-Valued Columns. 

If these two conditions satisfy we can call it as atomic. And the aim is at simplifying and 

why, because to make the queries easy. 

(Refer Slide Time: 11:11)  

 

So, let us talk about 1NF example. let us see a Demonstration, how this we can take care of it. 

So, let us take a Table here, this is an Employee Table, we call this an Un-Normalized Table 

and we were being discussing this in the previous. So, if I do a Schema of this, the Employee 

number, so the Schema will be something like this. If I do the Schema, it will be challenged 

by that Employee number, then there is a Name, then there is a Department number, then 

Department name and Skills. This is a Schema. And the Employee number with an 

underlining that means this is the Primary Key (PK), I call it as a PK (not the movie PK), PK 

stands for Primary Key.  

So, then you can see that there is an Employee one named Lady Ada who belongs to 

Department 201 and the Department name is R&D and the Skills are C, Perl, and Java so, 3 

skills. Employee number two Charles Babbage from IT has Linux and Mac are the Skills. 



And the Employee three Boyce Codd from Department R&D, again same Department, DB2, 

Oracle and Java.  

So, the rule says No Repeating Columns. So, there are no columns that are repeating. So, 

1NF rules are:  

 No Repeating Columns.  

 No Multi-Valued Columns.  

So, now when you look into this, the first part is okay, we do not have any Repeating 

Columns. But the second part is we have a Multi-Valued, so this is our Multi-Valued 

Column. So, this means, this Employee Table is currently not in First Normal Form.  

How do we make this into First Normal Form? The way to make this into First Normal Form 

is remove the Multi-Valued Column. So, then the resulting table in the 1NF will come to be 

something like this- Employee number, Name, Department, Skill. So, you will see Employee 

number 1, Employee number 1, Employee number 1 Lady Ada. All these details are repeated, 

where the Skills are different.  

So, by Normalizing what happens is, there is only this column got simplified, there is no 

more Multi-Valued Attributes. We can search how many people in this whole thing knows 

Java. So, we can basically say Boyce Codd also knows and Lady also knows Java. So, this 

problem becomes much more easy but you can see that, this much of information is repeated. 

And so is this also and so being with Charles Babbage also, but I am just showing this. So, it 

is repeated and Charles Babbage also repeated. So much of redundancy has now added, so in 

the row vise you have added redundancy, but in that process, you eliminated the Multi-

Valued Columns. But as per the definition of 1NF, so this is a 3-row table.  Now, this has 

become 8-row table. The 8-row table is now in 1NF or 8 rows are created, so that, this Multi-

Valued Column (the last column), Skills column got to what we call as a First Normal Form.  

(Refer Slide Time: 15:21)  



 

Now, let us talk about the following one. So remember, what is Normalization. we 

sequentially apply a set of normal forms to make the Table (the database design) better. So, 

the Second Normal Form is: 

 Criteria or Goal of the Second Normal Form is that each attribute must be 

Functionally Dependent on the Primary Key. Each attribute must be (this is a 

mandatory condition and it should be) Functionally Dependent on the Primary Key.  

So, now the question is what is Functional Dependency or what is Functional Dependence?   

 The property of one or more attributes (certain attributes) that uniquely determines the 

value of other attributes. So, what we are saying here is, Functional Dependencies is a 

property of one or more attributes (certain attributes in a table), it has a capability to 

uniquely determine the value of other attributes. So, if you know one attribute then 

you can determine the rest of it.  

How is 2NF applied? The application part of 2NF is pretty simple.  

 Any non-dependent attributes in a table are moved into a smaller table or a subset 

table.  

What does 2NF accomplish? So, the first thing is,  

 2NF improves data integrity.  

So, what is the Data Integrity?  



 It is a Preventing update, insert and delete anomalies And what these anomalies? 

Anomalies, we will see with examples quickly once we go through.  

So, the rule is:  

1) You first apply 1NF.  

2) Second step is to apply 2NF.  

3) And after that you do 3NF, 4NF, etcetera like that.  

So, we now know what is the Second Normal Form.  

 

(Refer Slide Time: 20:02) 

 

So, now let us take an example of the Functional Dependence. Let us see what Functional 

Dependence is. So, let us take the Table, that was in the 1NF, the same table that we saw 

before, where the Skills was a Multi-Valued Attribute. So, we eliminated Multi-Valued 

Attribute.  

So, this Multi-Valued Attribute was eliminated and we got the table in the First Normal 

Form. So, in this case we can control few things, 

 Name, Department number, and Department name, attributes are Functionally 

Dependent on Employee number. So, in another way to say, it is that Employee 

number, which is the Key Attribute, determines the Name, Department number, and 



Department name of an Employee. So, if you look into this, that is the Functional 

Dependent. So, if you know the Employee number you can figure out the Name of the 

Employee and which Department that person is working for and the number of the 

Department. So, then the other part is, you should also see that what about the last 

column?  

 Skills is not Functionally Dependent on Employee number. Why is it not Functionally 

Dependent employee number? Because it is not unique to each Employee or 

Employee number.  

So, knowing Java is not unique, other people can also know Java. So, it cannot say that the 

Employee number three uniquely determines or functionally determines the individual skills 

of the person.  

So, then what happens is, the skills aspect of it is not really something that can be determined 

by Employee number. So, one other way to denote this, is typically what certain type people 

do is this. They create a Schema Diagram. There is an Employee number, then there is a 

Name, then Department number and Department name (this is another approach people do) 

and Skills. An Employee number you draw something like this, so, that means the Employee 

number functionally determines all the three attributes and not the Skills attribute. So, that is 

something, that is outside the Functional Dependency of this Table. 

(Refer Slide Time: 23:36)  

 



 

So, now, how do we get it into this one? How do we convert it do 2NF? So, this is example of 

2NF. See the example, the Table that is in the 1NF form the Employee number name with the 

skills and everything which was reduced from the un-normalized form to 1NF. What we do 

is, we first create a Table because the: 

 Process is to break into smaller subset tables so that, the Functional Dependency can 

be maintained.  

So, first we break it into a thing, where these aspects the 2NF Tables, the Employee number 

uniquely determines the Name, Department number, and Department name of the person. So, 

this is a new Employee Table (this is a Second Normal Form Table), and we create a second 

table of 2NF Table called Skills. So, we just keep record of what are the Skill each individual 

Employee has.  

So, if a person acquires a new skill, so the person 2 Charles Babbage acquires a new skill of 

Accounting or let us say Tally software so, then we have Tally right here. So, that can be 

added into this and we do not need to change anything in this. So, you can see now that, all 

that data is being redundant, so these entire were redundant information, that when came 

here, got reduced. Now, we can see that non-redundant, where the time you implemented the 

Functional Dependency, this breaking it into two tables, all these, that we typing, the Name 

of the person, Department number, R&D, everything is gone. And the only time, where you 

can actually see repeating happens is, just this one. So, now, we can see that the resulting 

database has become much more efficient in comparison with that of the original database, 

where all these data, these 8 columns, has been redundantly kept on stored.  



So, now, let us look at what we called as (I mentioned a term before what we called as) Data 

Integrity. So, this is the data integrity, preventing update, insert and delete anomalies.  

(Refer Slide Time: 26:11)  

 

So, let us talk about what is Data Integrity by illustrative examples. So, we are going to look 

into this by each individual example. So, the first one we are going to see is:  

 Insert Anomaly: So, what is an Insert Anomaly is, that in a simplest thing, it is called 

as adding Null Values. So, here is an example for this- Inserting a new Department 

does not require the Primary Key of Employee number to be added.  

So, one example is this so, I am creating a new Department call 203 and it is called as 

Marketing. So, if I add something called 203, Marketing right here. Then this value will be 

Null and can be Null and this could also be Null. So, this is called as an Insert Anomaly 

because this information, by just adding a new Department into this, I will have to put Null 

values for the remaining name because having an employee information is not really 

mandatory as part of this. 

 Update Anomaly- Multiple updates for a single change thereby causing performance 

degradation. Let us take an example for this- Changing IT department name to 

Information Systems department. Assume that we changed IT department name to 

Information System. Somebody decided to change the name of the department. So, 

what do you do? You end up going here, you change this and you change this, if I 

change the department R&D to I will say innovative design or something like that. So, 



then 123456 rows are to go there and type, type, type, type, type, and make the 

changes. So, when you make a single change, like for example, in this case the single 

change, we can talk about as a Name change. So, then it will result in, you have to 

change it in many places, wherever this Department name shows up, and then all data 

has to be removed and then the new data has to be protected. And when you have so 

many rows in it, now only we have 8 rows. Assume there are 8000 rows, then you go 

through and change wherever rows this department name is appearing twice so, that 

becomes the Update Anomaly.  

 Delete Anomaly- This is also another anomaly and the simplest way to say about this 

is, Deleting wanted or necessary information. Now, let us take an example out of this- 

If I delete the IT department will result in removal of Employee. Who will be 

removed out of this, if I remove the IT department? Charles Babbage will be removed 

from here, employee Charles Babbage from the database. So, let us say the top person 

decides that IT department is useless, we need to remove this department so they 

deleted it. And in this kind of a Table, where you are not taken care of stuff like this 

and you deleted the IT department, then along with the deletion of IT department, 

Charles Babbage's information also, the employee whose necessary, who was the only 

one with the Linux and the Mac experience in the organization also, gets deleted out.  

So, these three things, what we call as Data Integrity as part of this is, basically driven by the 

Insert Anomaly (number one), Update Anomaly, Delete Anomaly. And the aim of doing 2NF 

is to prevent these anomalies.  

(Refer Slide Time: 32:00)  



 

 

 

So, now we move to the Third Normal Form (3NF). So, our first step is:  



1) Apply 1NF 

2) Apply 2NF  

3) Apply 3NF 

So, Third Normal Form the Goal or Aim. What do we gain to achieve by doing a Third 

Normal Form? The goal is to Remove Transitive Dependencies. To Second Normal Form 

was to make sure the Functional Dependency, here you are trying to Remove Transitive 

Dependencies.  

So, question is what is Transitive Dependence?  

 So Transitive Dependence means, the simplest way to answer to this question is, Two 

separate entities exist within one Table. So, there is one Database Table, you can 

think about as one database table. One single database table, in which two separate 

entities or two separate items are physical exist within the same Table. 

So, how do we address Transitive Dependence?  

 Any Transitive Dependencies are moved into smaller or a subset of Tables. Same 

way, as we do the Functional Dependency here also, we move into a subset table.  

So, what this result in? What is the Third Normal Form?  

 3NF further improves more data integrity. The aim is again it improves data integrity 

more, which means it prevents update, insert and delete anomalies. So, in this table 

we have seen that, this Department number and Department name. Department is also 

another entity. An Employee is another entity. They are co-existing in one table. 

Though Functionally it is but Transitive Dependency which means two separate 

entities existing in one table, does not really help in this regard.  

(Refer Slide Time: 35:44)  



 

So, then how do we solve that problem? So, as we said earlier, we will take the Table, that is 

in this 2NF, which is the Employee name. So, we have one entity which is the Employee, 

which has an Employee number to it. And then there is a Name of the Employee, as part of 

this. And then there is a Department entity, that has a Department number, and Department 

name.  

So, both of these are two separate entities, but they co-exist in one table. So, that is the one, 

what we call as Transitive Dependency. So, how do we solve that problem or how do we 

address this problem? So, the way to think about it is:  

 Department number and Department name are Functionally Dependent on Employee 

number. They are Functionally Dependent because the Employee tells you what 

Department the person is belong.  

 However, Department can be considered as a separate entity. So, as I shown you here, 

the two separate entities. You can consider them as two separate entities. So, then 

how do we tackle this problem?  



(Refer Slide Time: 37:39)  

 

So, the simplest thing to do it is, let us work this example out. So, the Employee (2NF Table), 

Employee number, Name and with the two separate entities existing in it. So, to move it into 

the 3NF. So, the first part is,  

 We break the Employee number, the Employee name and the Department number 

only into one table. And this is the Existing Table moved into 3NF 

 And we have the Department a newly created Table, this is the subset table, that is 

created.  

So, the Employee Table got reduced. So, the Department Name got removed, but the 

Department Table 3NF, the new subset table that is created, has Department number with the 

Department name as part of it. Now, when you look into this table, that we have new 3NF 

Table created. Earlier also we have splitted:  

 In 2NF we had created a Skills Table, that is another subset. So, as we go through, we 

keep on applying Normal Forms, we break tables into smaller, smaller things, to make 

sure that the Table becomes, the you can easily manage the database and update, 

delete, and insert anomalies can be managed.  



(Refer Slide Time: 39:18)  

 

So, then comes the Other Normal Forms. So, we have gone to first second and third normal 

forms. Now, there is three more Other Normal Forms. So, the first one we go into talk about 

is:  

 Boyce-Codd Normal Form (It is also known as BCNF)- We will talk about the order 

of application. What is this aims to? The main aim is,  

 It strengthens Third Normal Form by requiring the keys in the Functional 

Dependencies to be super keys that means it is a Column or Columns that 

uniquely identify a row. So, the Boyce Codd Normal Form literally means that 

you have a table like this and you have, let us say for example, PK1 and PK2 the 

two Composite Primary Keys. And we have attribute1, attribute2, attribute3, 

attribute4 and attribute5, then either this one or two, they should all uniquely 

identify together (identify the remaining five columns). So, the entire row is 

uniquely identified by this. This is a stricter form of the Third Normal Form.  

 Fourth Normal Form (4NF): 

 Eliminate trivial Multi-Valued Dependencies. These things we will discuss more 

down in the remaining lectures because these are outside the scope of this 

introductory class.  

 Fifth Normal Form (5NF): 



 Eliminate Dependencies not determined by keys. So, whether it is a Primary Key or a 

Super Key. If there are any dependencies that cannot be determined by the keys then 

eliminate those dependencies.  

So, the Order of Application for us in this regard:  

1NF first followed, then Second Normal Form, then Third Normal Form, then Boyce Codd 

Normal Form, then Fourth Normal Form, then Fifth Normal Form. But the designer can 

choose to stop at any level based on the requirement. There is no rule that says you have to go 

all the way to the Fifth Normal Form. You are free to stop at Second Normal Form, you can 

stop at BCNF, you can stop at Fourth Normal Form. It is all depending upon the type of the 

database that you have, the application of the database and how the DSS is supposed to 

utilize the database.  

So, many of the time I have seen people just applying First Normal Form and calling it good, 

but that may not be the good idea because many times you may also end up getting 

redundancies in the row. So, it may be better to go to Second Normal Form, Third Normal 

Form. I usually in complicated databases take it to Third or Boyce Codd Normal Form. But 

4NF, 5NF usually when you require really good speed, extremely good retrieval and write 

speed then you need to look into the higher normal forms.  

So, with this, we complete this portion of the lecture, especially of looking into Normal 

Forms, where we are now seen, how do we take the Database Design, the Tables that you 

designed and you break them into smaller ones so that your queries and other kinds of things 

are efficient and cute to process. So, we are not seen in details what are the major queries 

which we will cover in the next class or the major queries are. 

And then after that we will take a quick look into how these queries pertaining to MySQL or 

Maria DB. And after that we will look into what is Big Data and then we will call it good 

after that and that will probably cover the basic requirements of DBMS (Database 

Management System) and the Component of the DSS. Thank you very much. 

 

 

  



 


