
Computer Aided Decision Systems -

 Industrial practices using Big Analytics

Professor Deepu Philip

Department of Industrial & Management Engineering

Indian Institute of Technology, Kanpur

Professor Amandeep Singh

Imagineering Laboratory

Indian Institute of Technology, Kanpur

Lecture 48

MySQL and PHP – The Backend of Decision Support Systems

Good afternoon, everyone. Welcome back to yet another lecture on Web-based Decision

Support Systems for managers, business managers and practitioners. I am Deepu Philip from

IIT Kanpur and we are continuing our lecture on the application program and especially how

to interconnect.

(Refer Slide Time: 00:38)

So, if you look at the slide, we have seen so far that the Web-based DSS has four major

components. The first major component is DBMS (Database Management System) and the

second major component is called MBMS (Model-based Management System). So, in DBMS,

we have studied something like MySQL or MariaDB, the same. And, the Model-based

Management System, we studied PHP which can build the decision models and it can also

build the application program or application layer.

So, these two DBMS and MBMS need to talk with each other. So, another way to think about

it is, this is the interconnect. So, this interconnect implies that, DBMS should communicate

with MBMS. So, we can replace this with as MySQL or MariaDB should talk with PHP or

should communicate with PHP. So, because you are using PHP to make this connection

happen. So, that is what we are trying to study or take a quick overview in today's lecture. And,

this interconnection that drives the backend communication that ensures data driven decisions.

To make the decision you need data and how do you get the data? You get it from the DBMS

and once you get it from the DBMS then, you can use the data to drive your decision. So, how

is that going to happen is what we are going to see today.

(Refer Slide Time: 03:16)

So, what is MySQL, MariaDB quick refresher not going to spend too much of a time, we

already spent time on this, we already saw SQL, many aspects we already went through.

➢ MySQL is the most popular open-source database system and MySQL you can read it

as MariaDB because MySQL is now bought by Oracle. So, even though MariaDB is

the open-source fork of MySQL. It is the most popular open-source database system.

➢ And, in MySQL or MariaDB, the data is stored in the database objects called tables,

there are different tables. We saw how to create the table. Remember, the create table,

syntax and etcetera. We are going to create tables, query tables, select tables and all

those kinds of things. So, what is a table, a table or another word to talk about, it is a

relation. We talked about that also, what is the relation, what is an object, what is it

tuple, all these things we have mentioned.

➢ So, a table is a collection of related data entries and it consists of columns and rows.

So, remember, a database table will be something like this. And, each one of these

columns were the attributes. Columns are the attributes and rows are the tuples or the

entity. An instance of an entity goes into the row, we already saw that.

➢ So then, why do we use databases? Briefly, we said that databases are very useful or

they are very powerful when storing information categorically. You want to classify it

and store the information for that is why you use the databases.

➢ And, most of the time a database consists of one or more tables, so, tables or entities,

you can think about it that way. So, most of the time, the database has more than one

table.

(Refer Slide Time: 05:14)

Now, some of the MySQL or MariaDB facts we need to look into again, as a quick refresher.

➢ The great thing about this one is that it can be scaled down, easily scalable to support

embedded database applications. It allows, in another way to say, it allows for plenty

of simplification. We can call it dummy dawn, keep it simple and stupid, that kind of

a thing. So, it can be very easily scalable. And, because of the scalability, this beautiful

scalability and this reputation of the scalability, many people believe that MySQL can

handle only small to medium sized systems. MySQL is actually large. MySQL or

MariaDB both can handle enterprise level systems. They are designed to handle

enterprise level systems. But, unlike Oracle, or Microsoft SQL Server, or server or

something like that, it beautifully scales down, you can make simplest applications out

of it. Whereas, an oracle or Microsoft SQL Server, that is not equally easily possible.

So, that is why people use it to make simple applications. People believe that it can only

handle small and medium sized databases, small or medium sized systems.

➢ So, the main truth is that MySQL or MariaDB is the de-facto standard database. It is

the basic database that for websites that supports huge volumes of data, both at the end

users stores data, and it also does analysis. So, Friendster, Yahoo, Google, eBay, all

these things are driven by the backend database, MySQL. So, that says, it can handle

very large systems and one side and simpler systems on the other side.

(Refer Slide Time: 07:26)

And, another beauty of MySQL, we should understand is, MySQL integrates with PHP or

MySQL or MariaDB, either one, both of them have very good seamless integration with PHP.

So, another way is that many built-in functions are readily available. So, which means it makes

easy for the programmer to build applications. You do not worry too much about how to do

this, you can easily build the application.

➢ So, the first thing you need to do is before accessing the data in a database using PHP,

first, you need to establish a connection to the database. So, PHP provides you with a

built-in function called MySQL connect function. MySQL_connect also connects with

MariaDB, you do not have to change, this is the same thing. So, the MySQL_connect,

this is a function as I told you earlier it is a built-in function, you do not need to code

the function, it is already coded for you, pre-done for you, you just need to call the

function.

➢ So, the MySQL_connect function, the format is, this is the function name, and these are

the three arguments.

i) The first one is a servername. The servername is the name of the computer server

or you can call it as IP address, where the database is stored. The servername is

the name of the computer server where you are storing the database.

ii) Then, the username is the username to access the database in that server

iii) And, the password is the associated password.

➢ So, as I said earlier, servername is optional. If you do not give it, that is fine, it will

default. There is a default value. The default value is Localhost. "localhost:3306" means

that, if you are not given any servername, it assumes that wherever this localhost

implies that wherever the PHP script is located, the MariaDB database is on the same

computer, same machine. So, it says, wherever the script is, it will also be at the same

place. So, that is what this 'localhost:3306' means, otherwise you give it a name to

whichever server you need it to be connected to.

➢ The username is optional. So, again, you need to give the username ideally. If you do

not give the username, the default value is the name of the user who owns that server

process. So, if I do not do anything, whoever owns the server process, or if I am

connecting to something, whatever the name it came through, it will take that and

connect accordingly.

➢ And then, the password is also optional. The default value is an empty, null string. So,

as I mentioned earlier, the username and password and the servername are required to

connect to the database. This establishes the connection to the database.

(Refer Slide Time: 11:28)

So, here is an example.

➢ So, <?php is the start of the PHP code. So, it tells ZEND to parse, and starts the parsing.

So, I have a variable called $connection con equal to MySQL_connect, I call the

function and "someserv" some name of the server, username is "root", password is

"abc123" for the time being. So, if the connection is successful, if these parameters are

fine and the connection is successful, MySQL_connect returns a value called true.

So then, what I am saying is that if not $ connection means if the value of $ connection is not

true, that means I could not establish the connection. Then, I use PHP. The PHP function called

die could not connect, and whatever the MySQL error, I use wrong username, wrong password,

whatever it is, I print out whatever the error is.

So, this will only be done if the connection establishment fails. Otherwise, it will continue the

remaining part of the code, if the connection is successful. So, that is the logic. So, this will

work only if the MySQL_connect function returns a false or not true. So, by default, it returns

true, if it does not return true, returns something else, then, this $connection will not be true.

And then, we can print whatever is there.

➢ So, the die function prints a message and exits the current script. So, whatever you are

doing, die will just make sure that you do not go any forward, print, error, message and

etcetera. So, this is an alias of the exit() function. Also, the advantage is that the

message, whatever you want to print, can be the format of the die function is die with

whatever message, you want to print it.

➢ And then, the other function that you are having is the MySQL error function. And

returns, what it does is, it returns an error description of the latest MySQL operation. If

no errors if the connection is successful, absolutely no issues, it will return an empty

string. If it does not return an empty string, then, that means the connection could not

be established and there was an error. So, that is the important part.

(Refer Slide Time: 14:04)

➢ Now, once you establish a connection with the database, it is important that you should

also close the connection. Most of the time, the connection will be closed automatically

when the script ends. There are certain times this does not happen. So, it is a good

practice to make sure that you close the connection.

➢ And, to close the connection, you use the MySQL_close() function. So, this makes sure

that there is an unnecessary connection to the database and it will not slow down your

server. So, it is a very good programming practice to ensure that connection to the

database is closed.

➢ So, if you use this connection as the variable, if that is the variable that you are going

to use, then, the example is MySQL_close ($con) which means close the connection.

So, it will make sure that everything, all connections with the server, database server is

cut, and it will free out the resource.

(Refer Slide Time: 15:21)

Now, how do you SELECT query using PHP?

➢ So, we have seen that the SELECT statement is an SQL 99 statement. It has its own

syntax. Remember, SELECT, then, we gave <attributes> FROM <TABLE> WHERE

<condition> we have done this in the previous. We saw this structure of select SQL

syntax. So, the SELECT statement is that we can use it to select data from a database.

From where in a database? Database table, from a specific table you can collect the

data. You can even take it from database tables also, you can use join and those kinds

of things to do tables or tables. But, how do you do that with a PHP script? Why would

you do that within a PHP script?

➢ So, to do it, get it in a PHP script. What you do is, to execute the SELECT query or for

that matter any query, does not have to be a SELECT query, you use the

MySQL_query() function. It is also a built-in function. This is also built-in, it is written,

coded, tested, everything, all you need to do is just use the function.

So, what does this function do? This function is capable of sending a query or command to the

MySQL connection. So, you use the MySQL connection. Once you establish a connection,

then, you use the MySQL query to access the database whether to run a SELECT query or

insert query or delete query whatever the query you want to do, you use the MySQL query

function.

➢ So, let us assume for the time being that there exists a table named Pinfo. So, the table

Pinfo is something like this, 'Personal Info'. Let us take that for example with columns

Fname (first name), Lname (last name), age, sex. So, we can have one thing called Ram

Kumar, age 40, male. Sita Devi, 32, female like this and then, you can have Tom Allen,

59, male like this. So, there is data in this one.

So, you have first name, last name, age and sex. These are the attributes or columns. These are

the rows or tuples or entities. Each one of them is, Ram Kumar is one entity with the personal

info, Sita Devi is another entity of the person. So, this is just to refresh you. That is the case.

(Refer Slide Time: 18:41)

Then, the code works like this. First one is, it says <?php. You call the mysql_connect function.

And here, I am giving it a servername for example, just to show "mysql.ime.iitk.ac.in". So, it

is one of the servers in my lab and "dphilip" is the username and this "password", I am not

going to show you what my password is. And then, $con is the variable so, it is a connection

variable established. So, what it does is, the MySQL connection will go to query the server and

say here I have a username and a password. Do you have a database in which I can access this

credentials work?

So, this function checks and MySQL says yes, I have a database and these credentials are valid.

So then, if it is true, it will return an empty string. If not, it will send an error. So then, I use the

die statement and the code exits here. If connection unsuccessful, code exits here at

mysql_error() leave out at this point. If this is not, then, go to the next one.

So, I will say mysql_select_db. This is to select a PHP function to select a specific database

associated with that connection. So, let us say in this particular database we enter the username

"dphilip" and password. I have another database called "dphilip". So, that is why I am

connecting to the "dphilip" database.

Let us say I have another one called student details. Student underscore details (DTLS). If this

was another database so, instead of "dphilip", I would have used this name there. So, you

basically say whichever the database you want to collect, you want to use using that particular

connection $connection, you specify that here in this line, so that you can connect to the

database.

Now, here is a $query, it is a string variable and string variable it says SELECT Lname, age

and sex from Pinfo. So, we look into a Pinfo we are selecting Lname, age and sex. These three

things we are selecting, that is a query. So, you write the query in the form of a string here.

Then, you say $result is another variable, you say MySQL query and you give the variable as

$query. So, this query gets executed right here. So, this is execution of the SQL query on the

specified database, selected using the mysql_select_db function. So, whatever database you

selected using this, this query will run on that database. So, make sure that the database in

which Pinfo is stored is exactly the correct one.

And then, another important thing is, the result of the query is returned in the form of an

associative array. The data comes back in the form of an associative array. So, the result, this

variable, is an associative array. So, in this associative array, how will that variable be stored?

It will be stored somewhat in a very weird fashion. The associative array will create something

like this:

$result (array (“Kumar”=”40”), (“Kumar”=”M”)

Array(“Devi”=)

So, it will store the format of a fun associative array. So, all I just need to do is, to get one row

out of this associative array I need to use another function called mysql_fetch_array. This is

another pre-built function of PHP that extracts one record at a time from an associative array.

So, it fetches one line at a time or one row at a time. So, it will first take this and then, take the

next one then, it takes the next one like this and will keep on repeating until there are no more

records available. So, the $row variable will be one line or one record of the associative array

of the result. So, use that and the $row will contain that and then, you say $row you the key

Lname. So, this is the Lname, age and sex will be the key so, that is what it is.

So, Lname it will print the last name of Kumar, age it will print it and then, the sex it will print

it. And then, you line break and it will keep on repeating all of this. So, while the $row =

mysql_fetch_array, if there is one row to return then, the stuff is true. So, this whole execution,

this whole condition will remain true, remember. So, the While Loop, this is the block of code

of the While Loop. And then, it will run and when all the records are over, then, this

mysql_fetch_array will return false. So, this will return false when all records are exhausted.

When all records are exhausted, it will return false, and the loop will stop, and things will come

up. So, you keep on seeing the results. And then, once it is done, you close the connection to

the MySQL database. So, that is the MySQL close connection. So, this is a simple example of

how you can run the SQL in a particular database within MySQL.

(Refer Slide Time: 25:56)

So, as I mentioned earlier, the mysql_select_db function. So, one important thing that you

remember is that the first thing is connect to the database then, select a database with the

connection, then query the database, manipulate the result. So, this order of logic.

➢ So, in that regard, a database must be selected before a table can be queried, it is very

important. So, after the connection, you have to select the database.

➢ The selection of the database is done with the help of MySQL_select_db function. So,

the MySQL_select_db function determines which database to be selected. So, this

function sets the active MySQL database. So, using the connection, it will find this

database is there. I am going to make it an active database. The function will return

TRUE on success, if it finds a database like this and I can make it active, it will return

TRUE on success or return FALSE on failure. I have no database like this, it will return

false.

➢ The format of this is MySQL_select_database, the name of the database and the

connection. The name of the database is a required thing you can specify what it is. So,

this is the name of the database and connection is optional, in this case specified what

the connection is. If it is not specified then, it will use the last opened connection,

whatever we the last opened what, it will pick it up and use it by default. So, it is always

a better idea to specify the MySQL connection, whichever connection you want to use

is a better idea to specify, otherwise, you can get into bigger trouble, sort of.

(Refer Slide Time: 28:02)

➢ Then, as I mentioned earlier, the MySQL array function, I have shown you this code,

the mysql_fetch_array, I have briefly explained it. So, the mysql_fetch_array function

returns a row from the recordset as an associative array, or a numeric array. So, most

of the time, 99 percent of the time, you get it in the form of an associative array, because

database tables are complicated. So, each time when you call mysql_fetch_array, it

returns a row, one row. So, this function gets a row from the mysql query function, and

returns an array on success or false on failure when there are no more rows.

➢ So, if there is a row, it returns a row of success. So, if there is this result

mysql_fetch_array, it will return a row, if there is a record, if it is not, it will return

false. And, if it is false, the while loop will fail. And, you can get out of this.

➢ So, the syntax of this is mysql_fetch_array, data and array type. If array type is not

specified, MySQL_BOTH is used for both associative and numeric arrays. So,

typically, what happens is, in this code, if you see we have just mysql_fetch_array

result. We leave it to the freedom of PHP to decide whether you want to use a numeric

array or an associative array. Most of the time it goes into an associative array.

➢ So, after the data is retrieved, once you run this code and you retrieve the data. After

you retrieve the data, the function moves to the next row in the recordset. You do not

have to worry, you do not increment about all this, this is all built-in and tested, tried,

you can just use the whole thing. So, each subsequent call to MySQL_fetch_array

returns the next row on the recordset. So, every time you call it will return to the next

row.

So, once it extracts it points to the next one, extract, points to the next library like that. And,

the field names returned by this function are case sensitive. So, in this case, for example, if I

use a name like this, if this is the one, I am using as the attribute and if I type it Lname like this,

I will get an error. So, make sure that whatever be the attribute name or the column name in

the table that is what you use exactly here.

So, this should exactly match column names as critical because they are case sensitive and

similar, so, now we have seen how to run a SELECT query and how to input data into the

database.

(Refer Slide Time: 30:39)

Here is another example for that, the same way PHP as I said earlier, <?php starts the parsing,

establishes a connection using the mysqk_connect.

So, this is the connection to the database. And, this is if a connection cannot be established,

exit, do not do anything more.

If it is possible then, choose or select the database associated with the connection and make it

active.

So then, the next one is to query the database or execute the query. So, we know that there is a

table called Pinfo, already there. So, the Pinfo, you want to insert some values. So, your query

is INSERT INTO Pinfo, it is the table name. And, these are Fname, Lname, age and sex. These

are the four aspects of this one. And, we are saying that Fname insert the value Ram, Lname

insert the value Manohar, age insert 35, sex insert M, that is what this whole thing is. And, it

says the result, mysql_query ($query). So, in a select returns an associative array. In an insert,

it does not return any associative array. It says whether the query got executed or not.

So, insert means you are storing data into the database. So, once you capture values from the

HTML form, you can use insert queries to store it into the database. Once the query is done,

you close the connection to the database. So, once this is done, your manipulation requirement

with the connection of the database is over. So, in a general sense, this is how you do the

backend integration.

I just showed you two examples, select and insert. Same way you can use delete, same way

you can use update. I already showed you what the queries are. Using the same example, you

can modify them or you can modify these examples and try it out with your MySQL or

MariaDB database and try to see how you can actually achieve it, as part of your course

learning.

So, I showed you select and insert, try to update and delete on your own and try to make sure

that this works in the backend. And, if there is any doubt or other things, we will be available

in the forum to help you in this regard. Thank you very much for your patience. Thank you.

