Game Theory Prof. K. S. Mallikarjuna Rao Department of Industrial Engineering & Operations Research Indian Institute of Technology - Bombay

Lecture - 14 Zero-Sum Games: Proof of Minimax Theorem

Theorem 1 (Minmax Theorem, von Neumann). Every finite zero-sum game admits value.

Before proceeding with the proof we recall two results.

Proposition 1. Let C be a compact convex subset of a euclidean space \mathcal{R}^m and $0 \notin C$. Then there exists a vector $z \in \mathcal{R}^m$ such that

$$z \cdot x > 0$$
 for $x \in C$.

Proof. Since C is convex, there exists a unique point $z \in C$ such that

$$|z|^2 \le |x|^2$$

for every $x \in C$.

Now consider the hyperplane for which z is normal and pick any point in this hyper plane. Note that for any $x \in C$,

$$||z||^{2} \leq ||(1-\alpha)z + \alpha x||^{2} = (1-\alpha)^{2} ||z||^{2} + 2\alpha(1-\alpha)z \cdot x + \alpha^{2} ||x||^{2}$$

Therefore,

$$0 \le \alpha(\alpha - 2) \|z\|^2 + 2\alpha(1 - \alpha)z \cdot x + \alpha^2 \|x\|^2$$

Dividing by α , we have

$$0 \le (\alpha - 2) \|z\|^2 + 2(1 - \alpha)z \cdot x + \alpha \|x\|^2$$

Letting $\alpha \to 0$, we have

$$0 \le -2\|z\|^2 + 2z \cdot x$$

which gives the required inequality

$$||z||^2 \le z \cdot x$$

Proposition 2. Let A be any matrix of order $m \times n$. Then either

- 1. there exists $x \in \mathbb{R}^m$, $x \neq 0$, $x \ge 0$ such that $x'A \ge 0$; or
- 2. there exists $y \in \mathbb{R}^n$, $y \neq 0$, $y \ge 0$ such that $Ay \le 0$.

Proof. Let e_1, e_2, \dots, e_n be the unit vectors in \mathbb{R}^n . Let the rows of A be denoted by $a_1, a_2, \dots, a_m \in \mathbb{R}^n$. Let C be the convex hull of $-e_1, -e_2, \dots, -e_n$ and a_1, a_2, \dots, a_m , then C is a compact convex subset of \mathbb{R}^n . Now two cases arise: $0 \in C$ or $0 \notin C$.

Case $0 \in C$: In this case, there exists non-negative real numbers $x_1, x_2, \dots, x_m, \eta_1, \eta_2, \dots, \eta_n$ such that

$$x_1a_1 + x_2a_2 + \dots + x_ma_m - \eta_1e_1 - \eta_2e_2 - \dots - \eta_ne_n = 0,$$

and $x_1 + x_2 + \cdots + x_m + \eta_1 + \eta_2 + \cdots + \eta_n = 1$. Clearly all of x_1, x_2, \cdots, x_m can be zero. Indeed, if $x_1 = x_2 = \cdots = x_m = 0$, then we must have

$$\eta_1 e_1 + \eta_2 e_2 + \dots + \eta_n e_n = 0, \eta_1 + \eta_2 + \dots + \eta_n = 1$$

which contradicts the liner independence of the vectors e_1, e_2, \dots, e_n . Thus we have non-negative real numbers $x_1, x_2, \dots, x_m \in \mathcal{R}$, not all of them zero, such that

$$x_1a_1 + x_2a_2 + \dots + x_ma_m = \eta$$

where $\eta = (\eta_1, \eta_2, \cdots, \eta_n) \in \mathbb{R}^n$. Note that $\eta \ge 0$. In other words,

$$x'A = \eta \ge 0$$

where $x = (x_1, x_2, \cdots, x_m)' \in \mathcal{R}^m$, $x \neq 0$ and $x \ge 0$. This proves (i).

Case $0 \notin C$: Since $0 \notin C$, there is a hyperplane separating 0 and C. In other words there must exist $z \in \mathcal{R}^n$ such that

$$x \cdot z > 0$$
 for every $x \in C$.

Since $-e_i \in C$, we must have $z_i < 0$ and hence $z \neq 0$, $z \leq 0$. Now $a_i \in C$ and hence $a_i \cdot z > 0$ for every $i = 1, 2, \dots, m$. Thus Az > 0. Now taking z = -y we obtain Ay < 0 which proves (ii).

With these two lemmas in hand, we are now ready to prove the minmax theorem.

Proof. (Minmax Theorem)

From the previous result either we have two cases: there exists $x \ge 0 \in \mathcal{R}^m$, $x' \ne 0$ such that $x'A \ge 0$ or there exists $y \ge 0 \in \mathcal{R}^n$, $y \ne 0$ such that $Ay \le 0$. Letting $\bar{x} = \frac{c}{\sum x_i}$ and $\bar{y} = \frac{y}{\sum y_i}$, we note that $\bar{x} \in \Delta_m$ and $\bar{y} \in \Delta_n$ and either $\bar{x}'A \ge 0$ or $A\bar{y} \le 0$.

The first case means that $\bar{x}'Ay \ge 0$ for ever $y \in \Delta_n$ which means that the lower value of the game

$$V^{-}(A) = \max_{x \in \Delta_m} \min_{y \in \Delta_n} x' A y \ge 0.$$

The second case means that $xA\bar{y} \leq 0$ for every $x \in \Delta_m$, which gives that the upper value of the game

$$V^+(A) = \min_{y \in \Delta_n} \max_{x \in \Delta_m} x' A y \le 0.$$

Thus we have either $V^-(A) \ge 0$ or $V^+(A) \le 0$. Let $B = ((a_{ij} - c))$, where $c \in \mathcal{R}$. Note that $V^-(B) = V^-(A) - c$ and $V^+(B) = V^+(A) - c$. Thus we must have

$$V^{-}(A) \ge c \text{ or } V^{+}(A) \le c$$

for any $c \in \mathcal{R}$. This can happen only if both $V^{-}(A)$ and $V^{+}(A)$ are equal. This completes the proof of the minmax theorem.