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Zero-Sum Games: Proof of Minimax Theorem

Theorem 1 (Minmax Theorem, von Neumann). Every finite zero-sum game admits value.

Before proceeding with the proof we recall two results.

Proposition 1. Let C be a compact convex subset of a euclidean space Rm and 0 6∈ C. Then
there exists a vector z ∈ Rm such that

z · x > 0 for x ∈ C.

Proof. Since C is convex, there exists a unique point z ∈ C such that

|z|2 ≤ |x|2

for every x ∈ C.
Now consider the hyperplane for which z is normal and pick any point in this hyper plane.

Note that for any x ∈ C,

‖z‖2 ≤ ‖(1− α)z + αx‖2 = (1− α)2‖z‖2 + 2α(1− α)z · x+ α2‖x‖2

Therefore,
0 ≤ α(α− 2)‖z‖2 + 2α(1− α)z · x+ α2‖x‖2

Dividing by α, we have

0 ≤ (α− 2)‖z‖2 + 2(1− α)z · x+ α‖x‖2

Letting α→ 0, we have
0 ≤ −2‖z‖2 + 2z · x

which gives the required inequality
‖z‖2 ≤ z · x

Proposition 2. Let A be any matrix of order m× n. Then either

1. there exists x ∈ Rm, x 6= 0, x ≥ 0 such that x′A ≥ 0; or

2. there exists y ∈ Rn, y 6= 0, y ≥ 0 such that Ay ≤ 0.
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Proof. Let e1, e2, · · · , en be the unit vectors inRn. Let the rows ofA be denoted by a1, a2, · · · , am ∈
Rn. Let C be the convex hull of −e1,−e2, · · · ,−en and a1, a2, · · · , am, then C is a compact
convex subset ofRn. Now two cases arise: 0 ∈ C or 0 6∈ C.

Case 0 ∈ C : In this case, there exists non-negative real numbers x1, x2, · · · , xm, η1, η2, · · · , ηn
such that

x1a1 + x2a2 + · · ·+ xmam − η1e1 − η2e2 − · · · − ηnen = 0,

and x1 + x2 + · · · + xm + η1 + η2 + · · · + ηn = 1. Clearly all of x1, x2, · · · , xm can be zero.
Indeed, if x1 = x2 = · · · = xm = 0, then we must have

η1e1 + η2e2 + · · ·+ ηnen = 0, η1 + η2 + · · ·+ ηn = 1

which contradicts the liner independence of the vectors e1, e2, · · · , en. Thus we have non-
negative real numbers x1, x2, · · · , xm ∈ R, not all of them zero, such that

x1a1 + x2a2 + · · ·+ xmam = η

where η = (η1, η2, · · · ηn) ∈ Rn. Note that η ≥ 0. In other words,

x′A = η ≥ 0

where x = (x1, x2, · · · , xm)′ ∈ Rm, x 6= 0 and x ≥ 0. This proves (i).

Case 0 6∈ C : Since 0 6∈ C, there is a hyperplane separating 0 and C. In other words there
must exist z ∈ Rn such that

x · z > 0 for every x ∈ C.
Since−ei ∈ C, we must have zi < 0 and hence z 6= 0, z ≤ 0. Now ai ∈ C and hence ai ·z > 0
for every i = 1, 2, · · · ,m. Thus Az > 0. Now taking z = −y we obtain Ay < 0 which proves
(ii).

With these two lemmas in hand, we are now ready to prove the minmax theorem.

Proof. (Minmax Theorem)
From the previous result either we have two cases: there exists x ≥ 0 ∈ Rm, x′ 6= 0 such

that x′A ≥ 0 or there exists y ≥ 0 ∈ Rn, y 6= 0 such that Ay ≤ 0. Letting x̄ = c∑
xi

and
ȳ = y∑

yj
, we note that x̄ ∈ ∆m and ȳ ∈ ∆n and either x̄′A ≥ 0 or Aȳ ≤ 0.

The first case means that x̄′Ay ≥ 0 for ever y ∈ ∆n which means that the lower value of
the game

V −(A) = max
x∈∆m

min
y∈∆n

x′Ay ≥ 0.

The second case means that xAȳ ≤ 0 for every x ∈ ∆m, which gives that the upper value of
the game

V +(A) = min
y∈∆n

max
x∈∆m

x′Ay ≤ 0.

Thus we have either V −(A) ≥ 0 or V +(A) ≤ 0. Let B = ((aij − c)), where c ∈ R. Note that
V −(B) = V −(A)− c and V +(B) = V +(A)− c. Thus we must have

V −(A) ≥ c or V +(A) ≤ c

for any c ∈ R. This can happen only if both V −(A) and V +(A) are equal. This completes the
proof of the minmax theorem.
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