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Lecture 21
Iterated Elimination of Strictly Dominated Strategies

In the previous lecture, we have discussed bimatrix games, existence of Nash equilibrium and
a nonlinear programming method. In this lecture, we will see an intuitive way of solving certain
games. This method is known as solving by dominance, which we have seen already in the context
of zero-sum games. Now we will do this for bimatrix games and, in particular, we introduce what
is called iterated elimination.

We start with an example of a simple game. Consider the following bimatrix game:

P1
C D

P2
C 2,2 0,3
D 3,0 1,1

In this game, D strictly dominates C for Player 1. Similarly, for Player 2, as this is a symmetric
game, D strictly dominates C. Hence, as both are utility maximizing players, none will play C and
both end up playing D. This will lead to (D,D) being an equilibrium. This is known as solving the
games by dominance. Let us define this concept more formally:

• G = (S1,S2,π1,π2)

• Player i’s strategies: s′i,s
′′
i ∈ Si

• Then, s′i strictly dominates s′′i iff ui(s′i,s−i)> ui(s′′i ,s−i) for all s−i ∈ S−i.

We illustrate this by the following bimatrix game example:

P1
L C R

P2
U 4,3 5,1 6,2
M 2,1 8,4 3,6
D 5,9 9,6 2,8

Let us try solving this game by dominance. For Player 2, column R dominates C. Hence, he
will never play C as column R strictly dominates column C. This leads to the following matrix:

In the new matrix, Player 1’s strategy U strictly dominates strategy M. Hence, Player 1 never
plays column M. Continuing to do this, we get the profile (L,R) as the strict Nash equilibrium
which we get by iterated elimination of dominated strategies.
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P1
L R

P2
U 4,3 6,2
M 2,1 3,6
D 5,9 2,8

Theorem. If iterated elimination of strictly dominated strategies leads to a single pair of strate-
gies, then this single pair is Nash equilibrium.

Proof. We prove this by contradiction. Let iterated elimination of dominated strategies lead to
a single pair of strategies, given by (x∗,y∗). Suppose x∗ is not the best response to y∗.

Let X = {x ∈ Si|π1(x,y∗) > π1(x∗,y∗)}. Therefore, X is non-empty. All the strategies in X
must have been eliminated. Look at the last stage where a strategy x ∈ X is eliminated.

For x to be eliminated, there must be x′ ∈ S1 such that x1 dominates x. Therefore, π1(x1,y∗)>
π1(x,y∗)> π1(x∗,y∗). This means that the strategy x∗ is dominated by x1. But this is a contradiction
as x∗ is the last remaining strategy after iterated elimination of dominated strategies. Therefore,
(x∗,y∗) is a Nash Equilibrium. �

Moreover, when we look at iterated elimination it always leads to a unique solution. Next, we
define weakly dominated strategies:

Definition. s′ is said to be weakly dominated by s′′ for player i if

πi(s′,s−i)≤ πi(s′′,s−i)

for all s−i ∈ S−i and there must exist at least one s−i where this inequality is strict.
Let us see what happens if we do an iterated elimination of weakly dominated strategies. Con-

sider the following game:

P1
L R

P2
T 1,1 0,0
M 3,2 2,2
B 0,0 1,1

As we can clearly see, row T and row B are strictly dominated by column M. Removing it, we
get

P1
L R

P2
M 3,2 2,2

Now, as R weakly dominates L, (M,L) is eliminated. But (M,R) is not the only Nash equi-
librium. (M,L) is also a Nash equilibrium. Hence, the order in which you are eliminating the
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strategies affects which equilibrium we are arriving at. An interesting exercise would be to con-
struct an example, where the iterated elimination of weakly dominated strategies need not lead to
a Nash equilibrium. The iterated elimination of strictly dominated strategies however, if leading
to a single strategy profile, leads to the only Nash in the game. The same argument can be easily
extended to the mixed strategy space.

However, this method does not apply to all sorts of games. There are games that cannot be
solved by dominance. So, for that we require other kinds of algorithms. one algorithm that we
have seen already in the previous lectures is nonlinear programming. Another algorithm that we
are going to see in the next set of lectures, is known as the Lemke-Howson Algorithm which is
more of a combinatorial algorithm.

In fact, this Lemke-Howson algorithm also proves the existence of a Nash equilibrium using
fairly simple arguments with no fixed point argument required.
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