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Lecture 24
Non-Zero-Sum Games: Lemke-Howson Algorithm - III

In the previous lecture we introduced labels for the vertices of the best response polyhedron
and the corresponding normalized polytope. We also stated a lemma without a proof. We will go
back to that lemma and continue discussing the Lemke-Howson algorithm.

Lemma. In a non degenerate game for a pair of extreme points (x,y) we have |L(x)| = m and
|L(y)|= n.

Proof: Game is non-degenerate. Therefore, at most Supp(x) pure strategies can be best responses
to x, where x is the normalized vector of x. And similarly, at most Supp(y) pure strategies can be
best responses to y.

|L(x)| ≤ |S1 \Supp(x)|+ |Supp(x)|= m
|L(y)| ≤ |S2 \Supp(y)|+ |Supp(y)|= n

These polytopes are full dimension and (x,y) is an extreme point. Therefore,

|L(x)| ≥ m
|L(y)| ≥ n

Hence, this proves that |L(x)|= m and |L(y) = n|. This proves the lemma.

Now, let us look at the following theorem:
Theorem. A pair of extreme points (x,y) ∈ P1×P2 \{(0,0)} is fully labelled iff the corresponding
normalized vector (x,y) is a Nash equilibrium.

Proof. Let (x,y) ∈ P1×P2 \{(0,0)} be fully labelled. Let T1 = Supp(x) and T2 = Supp(y). For all
k ∈ T1, x does not have label k as xk > 0. Therefore, y must have label k.

⇒(Ay)k = 1

⇒(Ay)k′ =
1

yT1

while
(Ay)k′ ≤

1
yT1
∀k′ ∈ S1
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This implies that k is the best response to y. Further, for k /∈ T1, x does have label k. A label cannot
appear twice in a fully labelled pair. This implies that y does not have label k, which in turn implies
that k is not the best response to y. Hence, (x,y) is a Nash equilibrium.

Conversely, let (x,y) be a Nash equilibrium. This implies,

S1 \Supp(x)∪Supp(y)⊆ L(x)
S2 \Supp(y)∪Supp(x)⊆ L(y)

Therefore, L(x)∪L(y) = S1∪S2. This is the same as saying that they are fully labelled. This proves
the theorem.

Lemke-Howson Algorithm
The idea is to start from the origin and pivot alternatingly in P1 and P2 until a labelled pair is found.
Let V1 be the set of extreme points of P1 and V2 denote the set of extreme points of P2.

Let Ei be the set of edges between adjacent extreme points in Vi.

E1 = {(x,x′) ∈V1×V1 : |L(x)∩L(x′)|= m−1}
E2 = {(y,y′) ∈V2×V2 : |L(y)∩L(y′)|= n−1}

Let V =V1×V2 and E be given by the following:{(
(x,y),(x′,y)

)
∈V ×V |(x,x′) ∈ E1

}
∪
{(

(x,y),(x,y′)
)
∈V ×V |(y,y′) ∈ E2

}
The whole idea here is that if we restrict our attention to extreme points that are almost fully
labelled with the possible exception of a particular label i, then there is always a unique way in
which we can proceed.

We introduce another notation. For i ∈ S1∪S2, let

V i = {(x,y) ∈V : L(x)∪L(y)⊇ S1∪S2 \{i}
E i = E ∩ (V i×V i)

Theorem. Let i ∈ S1 ∪ S2. Then, V i contains (0,0) as well as every (x,y) ∈ V such that (x,y) is
Nash Equilibrium. Assuming non-degeneracy, the point (0,0) and the elements of V i correspond-
ing to an equilibrium have degree one in the graph (V i,E i) and all other nodes in V i have degree
two.

Proof. (0,0) and all pairs corresponding to Nash Equilibria are fully labelled. Therefore, the
first part is obvious.
For the second part, consider (x,y) ∈ V i and let (x,y) be the corresponding normalized strategies.
Now, as x,y are extreme points, from an earlier lemma that we have seen, |L(x)|=m and |L(y)|= n.

If (x,y) = (0,0) or (x,y) is Nash Equilibrium, then (x,y) is fully labelled and L(x)∩L(y) = φ .
The neighbours of (x,y) are those elements in V i that replace i with some other label, those where
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the constraints hold with equality instead of one corresponding to i. Since only x or y has label i
but not both, we may only replace it from one of them.

Dropping the label i, we obtain a new label and by non-degeneracy this label is unique other-
wise, if L(x)∩L(y) = { j} for some duplicate label j ∈ S1 ∪ S2, then the neighbours of (x,y) are
obtained by replacing j with another label. This replacement can be done either in P1 or in P2 and
for each of them, there is exactly one neighbour by the same reasoning as before.

(V i,E i)∀i ∈ S1 ∪ S2 consists of paths and cycles that are pairwise disjoint and the ends of paths
correspond to the pair (0,0) and to the equilibrium of the underlying game. This is the Lemke-
Howson algorithm. So, the Lemke-Howson algorithm essentially starts with (0,0) and it looks for
a path. From (0,0) it goes to another extreme point along this graph which we have introduced. It
eventually stops at a node with degree one, a Nash equilibrium.

In fact, this also provides a proof of existence of a Nash equilibrium. This is a very important
algorithm for solving bimatrix games. Moreover, this algorithm belongs to the class of path fol-
lowing algorithms or Homotopy based algorithms. In the worst case, however, this algorithm can
take upto exponentially many steps.
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