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Lecture 29
Brown-Von Neumann-Nash Dynamics

In the previous lecture, we saw fictitious play and some important results. In this session, we will
see another method to solve zero-sum games. In this method, we use differential equations and
this method is called Brown-Von Neumann Nash Dynamics or BNN Dynamics. We start with a
zero-sum game with the corresponding game matrix A. We assume a symmetric game, and hence
A is a skew-symmetric matrix.
Exercise: Let A be a matrix game. Consider another matrix game

B =

(
0 −AT

A 0

)
Then B is a symmetric game.

The exercise is to see that the Saddle Point Equilibria(SPE) of A and the SPE of B are related.
We assume a symmetric game A =−AT . An advantage of the above is that the value v(A) = 0. Let
P2 choose y at time 0. If Player 1’s value corresponding to y is not 0, then y will be perturbed.

There are m pure strategies. Take any (e1,y) where ei is a pure strategy with i = 1,2, ..m and y
is any strategy. Note that,

ui(y) = eT
i Ay value player 1 gets

y is the minmax strategy if ui(y)≤ 0 for all i = 1,2, ..,m. The minmax strategy for player 2 is the
one which gives

min
y∈∆2

max
x∈∆1

xT Ay

We know that because it is a symmetric game, the above is always greater than or equal to 0.
Because the value is 0, the above has to be equal to 0 for some strategy.

Define

φi(y) = max{0,ui(y)}
φ(y) = φ1(y)+φ2(y)+ ..+φm(y)

where φi(y) is the return of player 1 if ui(y) ≥ 0 as ui(y) is the payoff that player 1 is receiving.
BNN dynamics are given by the following equations:

dyi(t)
dt

= φi(y(t))−φ(y(t))yi(t) for t > 0 and i = 1, ...,m.

y(0) ∈ ∆1 = ∆2
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We extend φ to the whole domain by,

φ(y) = φ

( y
|y|

)
if y /∈ ∆

If y = 0, then φ(0) = 0. Moreover, these φ ’s are continuous functions. Also, as ui(y) are linear
in y, φi(y) is a Lipschitz continuous function. Also, as φ(y) is the sum of φi(y)’s, φ(y) is also
a Lipschitz continuous function. Hence, we can immediately say that by applying the Cauchy-
Picard’s theorem, this system of differential equations has a solution and it is unique.

This however, does not guarantee that y(t) ∈ ∆. We will now try to prove that y(t) indeed lies
in ∆. Consider the following auxiliary ODE :

dxi(t)
dt

= φi(x(t))

x(0) = y(0) ∈ ∆

Without loss of generality, we can assume that φi(x(0))> 0. Therefore, this auxiliary equation has
unique solution. Also, all the points lie in Rm \0. As xi(t) is non-decreasing, we have xi(t)≥ xi(0)
and we have without loss of generality, xi(0)> 0 and xi(t)> 0 for all t.

Now consider,

dα(t)
dt

=
m

∑
i=1

xi(α(t)) t > 0

α(0) = 0

xi’s are lipschitz continuous function. This is so because xi’s are solutions of the system of
differential equations given above, and their derivatives are φi which are bounded( remember
φ(y) = φ

(
y
|y|

)
). Therefore, applying the Caucy-Picard theorem again, there exists a unique so-

lution α(t).

dα(t)
dt

=
m

∑
i=1

xi(α(t))≥
m

∑
i=1

xi(0) = 1

⇒α(t) = t ∀t

Define

yi(t) =
xi(α(t))

m
∑
j=1

x j(α(t))

⇒y(t) ∈ ∆ ∀t ≥ 0

Claim: y(t) is the solution of BNN Dynamics equations.
We have

yi(t)
m

∑
j=1

x j(α(t)) = xi(α(t))
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Differentiating both sides with respect to t, we have

y′i(t)
m

∑
j=1

x j(α(t))+ yi(t)
m

∑
j=1

x′j(α(t)).α ′(t) = x′i(α(t)).α ′(t)

Applying a bit of algebra here gives us

y′i(t)+ yi(t)∑φ j(y(t)) = φi(y(t))

This implies that y(t) is the solution of BNN.
With an abuse of notation, we use φi(t) = φi(y(t)). Define

ψ(t) = ∑

(
φi(t)

)2

Suppose φi(t)> 0. Then,

dφi(t)
dt

= eiA
dy(t)

dt
= ∑ai jφ j(t)−φ(t)∑ai jy j(t)

We therefore have,

2φi(t).
dφi(t)

dt
=

d
(
φi(t)

)2

dt
= 2∑

j
ai jφi(t)φ j(t)−2φ(t)∑

j
ai jφi(t)y j(t)

If φi(t) = 0, this equality is true. Summing over all i, we have

∑
d
(
φi(t)

)2

dt
= 2∑

i, j
ai jφi(t)φ j(t)−2φ(t)∑

i, j
ai jφi(t)y j(t)

As A =−AT , ai j =−a ji. Hence, the second term is

∑φi(t)∑
i, j

ai jy j(t) = ψ(t)

as defined earlier. Hence, we proved the following lemma:

Lemma. ψ(t) satisfies
dψ(t)

dt
=−2φ(t)ψ(t)

From ideas in differential equations, we can prove that√
ψ(t)≤ φ(t)≤

√
mψ(t)
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This comes from the above differential equation on ψ(t) using integration by parts(left for the
reader as an exercise).
Hence, ψ(t) is decreasing. Moreover, φ(t)> 0 as long as ψ(t)> 0. Now, we have

dψ(t)
dt
≤−2

(
φ(t)

)3/2

⇒ψ(t)≤ ψ(0)(
1+
√
|y(0)|t

)2

where the latter comes from the Gronwall’s Lemma. Now, if ψ(t) = 0, the above is also true.
Hence, we can prove that

ψ(t) = ψ(0).exp{−2
∫ t

0
φ(s)ds}

From here we can see that

ψ(t)→ 0 as t→ ∞

⇒φi(y(t))→ 0 as t→ ∞

This implies that y(t) converges to a minmax strategy as t → ∞. Thus, this proves the following
theorem:
Theorem. BNN dynamics are asymptotically stable and any limit of the trajectory is a Saddle
Point Equilibrium.
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