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Cooperative Games: The Nash Bargaining Problem - II

In this lecture, we will prove Nash bargaining solution theorem. Before that we will look at
small example of Nash bargaining problem.

Example
Let us assume F to be convex hull of {(4, 0), (0, 4), (1, 1)} and let disagreement vector is (1,1).
Consider a maximization problem,

max (x1 − 1)(x2 − 1)

s.t. x1 ≥ 1, x2 ≥ 2,

(x1, x2) ∈ F

It is easy to see that (2, 2) is the solution of above maximization problem. This implies
f(F, (1, 1)) = (2, 2). One can see this solution satisfies all five axioms.

Nash Bargaining Solution
Theorem 1. Given two person bargaining problem (F,v), ∃ a unique solution function f that
satisfies above five axioms (strong efficiency, individual rationality, scale covariance, indepen-
dence and irrelevant alternatives, symmetry). The solution satisfies

f(F, v) ∈ arg max(x1,x2)∈F ;x1≥v1,x2≥v2(x1 − v1)(x2 − v2)

Proof. First, we will prove this result for class of problems called essential bargaining problem
and then we generalize for all classes.
(F,v) is called essential bargaining problem if there exists at least one allocation y ∈ F that is
strictly better for both the players than the disagreement allocation, i.e., y1 > v1 and y2 > v2.
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Let (F, v) is essential, therefore ∃ some y ∈ F such that y1 > v1 and y2 > v2.. Consider
optimization problem,

max (x1 − v1)(x2 − v2) (1)
s.t. x1 ≥ 1, x2 ≥ 2,

(x1, x2) ∈ F

where the term (x1 − v1)(x2 − v2) is called Nash product (say N(x1, x2)). Now we look at
function F from (x1, x2) to (x1 − v1)(x2 − v2). This function F is strictly quasi concave 1.

It is easy to show that a strict quasi concave function will always have unique optimal solu-
tion (here it is maxima). Thus from this we can conclude that the Nash product has unique max-
imizer, say (x1∗, x∗2). Let F ⊆ R be convex and closed, then F ∩{(x1, x2) : x1 ≥ v1, x2 ≥ v2}
is non-empty and bounded.
Now we need to prove following two parts

Part 1: Define f(F, v) = (x∗1, x
∗
2), f satisfies all five axioms.

Part 2: Suppose f(F, v) satisfies five axioms, then f(F, v) = (x∗1, x
∗
2)

Proof of Part 1: We need to prove (x∗1, x
∗
2), satisfies all five axioms.

1. Strong Efficiency: We can easily see that, if (x1, x2) ≤ (y1, y2), then N(x1, x2) ≤
N(y1, y2). Therefore, if (x∗1, x

∗
2) is maximizing the Nash product then there cannot be

any vector which is higher than (x∗1, x
∗
2). Thus, (x∗1, x

∗
2) is strongly efficient.

2. Individual Rationality (IR): Since (x∗1, x
∗
2) is the optimal solution of (1), thus we have

x∗1 ≥ v1 and x∗2 ≥ v2. Therefore, IR holds.

3. Scale covariance: Let us take λ1, λ2 > 0, µ1, µ2 and

G = {(λ1x1 + µ1, λ2x2 + µ2)|(x1, x2) ∈ F}

corresponding optimization problem is,

max
(y1,y2)∈G

(y1 − (λ1v1 + µ1))(y2 − (λ2v2 + µ2))

or max
(x1,x2)∈F

λ1(x1 − v1)λ2(x2 − v2)

This implies, f(G, (λ1v1 + µ1, λ2v2 + µ2)) = (λ1f1(F, v1) + µ1, λ2f2(F, v2) + µ2)

4. Independence and irrelevant alternatives: Let G ⊆ F , is closed and convex. Let (x∗1, x
∗
2)

is optimal to (F,v). Also, (y∗1, y
∗
2) is optimal to (G,v). Therefore, N(x∗1, x

∗
2) ≥ N(y∗1, y

∗
2).

1A function f : S −→ R is said to be strict quasi concave if

f(λx+ (1− λ)y) > min{f(x), f(y)}∀x, y ∈ S, λ ∈ (0, 1)
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Since, (y∗1, y
∗
2) is optimal to (G,v), therefore Nash product corresponding to G is maxi-

mum. Thus, N(y∗1, y
∗
2) must be maximum over all Nash products inside G.But (x∗1, x

∗
2)

is in G by the independence and irrelevant alternatives axiom, therefore N(x∗1, x
∗
2) ≤

N(y∗1, y
∗
2). Thus N(x∗1, x

∗
2) = N(y∗1, y

∗
2). This implies, (x∗1, x

∗
2) and (x∗1, x

∗
2) are also

equal. Because F is essential and Nash product is strictly quasi concave and therefore it
has a unique optimal solution. Thus, the axiom holds.

5. Symmetry: We have, (x∗1, x
∗
2) ∈ F =⇒ (x∗2, x

∗
1) ∈ F , and v1 = v2. Thus, (x∗1, x

∗
2)

maximizes (x1 − v1)(x2 − v1) and (x∗2, x
∗
1) also maximizes (x1 − v1)(x2 − v1). Since

Nash product is strictly quasi concave, it attains a unique optimal solution. This implies
x∗1 = x∗2. Thus symmetry holds.

Proof of Part 2: We need to show that, if f(F, v) satisfies five axioms, then f(F, v) = (x∗1, x
∗
2).

Note that x∗1 > v1 and x∗2 > v2, since F is essential. Consider

L(x1, x2) = (λ1x1 + µ1, λ2x2 + µ2)

Where,

λ1 =
1

x∗1 − v1
, λ2 =

1

x∗2 − v2
, µ1 =

−v1
x∗1 − v1

, µ2 =
−v2

x∗2 − v2

Thus,

L(x1, x2) =

(
x1 − v1
x∗1 − v1

,
x2 − v2
x∗2 − v2

)
. Notice L(v1, v2) = (0, 0) and L(x∗1, x

∗
2) = (1, 1). Define G = {L(x1, x2)|(x1, x2) ∈ F}.

Therefore, the problem (F,v) is now transformed to (G,(0,0)). it is easy to verify that (1,1) is
strong pareto efficient of G. therefore, the solution of (G,(0,0)) is f(G, (0, 0)) = (1, 1). The
Nash product in (G, (0, 0) is x1x2. Also, x1 + x2 ≤ 2 (we can prove this by contradiction).
Now , we know G is bounded. So, we can always find rectangle H which is symmetric about
line x1 = x2 and HG and it is convex and bounded. further, choose H such that (1,1)∈ G is on
the boundary of H. now, strong efficiency implies f(H, (0, 0)) = (1, 1). Using independennce
and irrelevant alternatives and scale covariance f(H, (0, 0)) = f(G, (0, 0)) = L(f, f(v)). Now
this implies L(f, f(v)) = (1, 1). Therefore, f(F, v) = (x∗1, x

∗
2). This completes the proof for

essential part.

Now we will consider non-essential part. Consider (F,v) which is inessential. F is convex
implies that ∃ atleast one player i such that y1 ≥ v1 and y2 ≥ v2 and this implies yi =
vi ∀(y1, y2) ∈ F . Without loss of generality, we can consider y1 ≥ v1, y2 ≥ v2 =⇒
y1 = v1 ∀ (y1, y2) ∈ F . Suppose x∗ is an allocation in F, i.e., best for player 2 subject to
constraint x1 = v1. Note that under inessential, Nash product is always zero. This implies x∗

is strongly pareto efficient. And all the other can also be easily satisfied. Thus we can say that
f(F, v) = (x∗1, x

∗
2). This completes the proof of the theorem.
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