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In this lesson, we will introduce panel data algorithm. We will start by highlighting the 

properties of panel data. In particular, we will discuss the problems associated with 

pooled-OLS estimation of panel data. Next, we will discuss the least square dummy 

variable approach to panel data estimation. Then we will discuss the first difference 

estimation of panel data. Then we will discuss fixed effects and random effects 

estimation of panel data. 

We will also discuss the scenarios in which these fixed effects and random effects 

indicators are more suitable. We will also discuss the model diagnostics with these 

different panel data approaches and under what conditions each of these approaches is 

more appropriate than others.  

In this video, we will provide a brief introduction to panel data methods and the 

background and setting to the problem statement.  

 

Order imbalance is a very important variable in financial markets. Its construction is done 

by Buy volume minus Sell volume divided by Buy volume plus Sell volume. The value 

of Sell here can be either dollar volume or number of shares or number of orders. This 



measure is a very important measure of information arrival. It varies from minus one to 

plus one. A very low value of minus one would indicate all selling. 

That means all the orders are sell orders while a value of plus one would indicate a lot of 

buying, almost absolute buying in fact. And a value of zero would indicate equal number 

of buy and sell orders whether in terms of dollar, number of volume or number of shares 

or orders. Let's think of the simple equation where we are trying to examine the 

predictability of returns from this OIB measure as independent variable and returns as 

dependent variable. Alpha nought is the constant term. But for us, the remaining three 

more terms, vt, alpha and mu_it are very important. 

𝑶𝑰𝑩𝒊𝒕 =
𝑩𝒖𝒚𝑽𝒐𝒍𝒖𝒎𝒆 − 𝑺𝒆𝒍𝒍𝑽𝒐𝒍𝒖𝒎𝒆

𝑩𝒖𝒚𝑽𝒐𝒍𝒖𝒎𝒆 + 𝑺𝒆𝒍𝒍𝑽𝒐𝒍𝒖𝒎𝒆
 

 
𝑟𝑖𝑡 = 𝑎0 + 𝑎1𝑂𝐼𝐵𝑖𝑡 + 𝑣𝑡 + α𝑖 + µ𝑖𝑡 

 
Let us assume a period of maybe 10 years and 100 securities. So it's a panel data kind of 

setting where multiple securities are being tracked over multiple time periods. Let's 

discuss these terms vt, alpha i and mu_it one by one. These are sort of our error terms 

which we are not accounting for in the model. vt here is solely time dependent. 

𝑟𝑖𝑡 = 𝑎0 + 𝑎1𝑂𝐼𝐵𝑖𝑡 + 𝑣𝑡 + α𝑖 + µ𝑖𝑡 

It varies from one to three and up till time T and it only captures those influences that do 

not vary across individual securities, but rather vary across time such as broad market 

wide changes. For example, changes in monetary policy, maybe changes in policy rate 

like, repo rate in India or Fed rate in US. These time dependent terms, they do not vary 

across city. And those of us who have done some kind of regression course and dummy 

variable analysis would recognize that simply accounting for n minus one or rather t 

minus one which is in this case if there are 10 years, nine dummy variables can easily 

account for these vt factor or vt. But what is this vt? This vt is the average of all those 

influences that are not varying across individual securities, but they are varying over 

time. 

So sort of trending with time and it is the average effect of all those changes for a given 

period. The next term of interest is alpha i. Alpha i is a security specific term and if there 

are n securities, it moves from one to three and up till n. Factors like firm size, firm beta, 

industry that are not changing with time, but rather changing with security to security.  

These are time invariant security specific terms. 

What are these terms? Generally, these alpha i are like we discussed these factors, the 

aggregate sum of all those factors will be loaded on this alpha i. All such influences that 



are security specific will be loaded on this alpha i term. In general and also in this 

example, like we discussed, this t period is rather small, while the number of entities like 

securities in this case is rather large. So it is easy, quite easy to model this t through 

dummy variable approach. But imagine, for example, if you have 100 to 1000 securities 

and you put n minus one dummy, for example, 99 or 999 dummy variables, that would 

make model extremely un parsimonious. 

And therefore, accounting for this alpha i or what we also call in technical terms 

unobserved heterogeneity through dummy variable method can make the model 

extremely inefficient. Although we will discuss this dummy variable method as a part of 

LSDV least square dummy variable method later on as well. But I hope we have some 

intuition by accounting for, let us say we have only two periods t equal to zero and t 

equal to one. And I want to account this through a dummy variable or other period t equal 

to one or t equal to two. Then I can place a dummy variable d, which takes on value of 

zero when period t equal to one and d equal to one when dummy variable is two. 

Usually the dummy variables are coded in zero one format, which has its own nice and 

useful mathematical properties. And also, depending upon your categories, for example, 

time periods, you tend to use n minus one dummy. For example, if you have 10 time 

periods, you would employ 10 minus one that is nine dummies and the constant term will 

automatically load the properties or attributes of the missing 10th period here on alpha 

nought. So, we have understood that we can account for this vt, but what if we do not 

account for this unobserved heterogeneity alpha i. To summarize this video, we discussed 

how a simple model like written predictability of order imbalance can create problems 

this OIB can create problems with rit when it is in the form of panel data. 

Due to this unobserved heterogeneities that are time invariant and security specific and 

security invariant time specific. We also noted that many times in practical applications, 

we can account for this time changing term vt, which is changing with time but not with 

security through dummy variables when time dimension is small. But accounting for this 

individual dimension, alpha i is not as easy and it can create problems as we will see next 

set of videos.  

In this video, we will try to understand visually as well as econometrically the problems 

with OLS estimation of panel data. More specifically, we will understand how that 

unobserved heterogeneity would affect the OLS estimation of panel data. 



 

Let us recall the OLS fitting procedure. You would have number of scattered point on X, 

Y, axis like this and you would fit the line of best fit such that this error term, this error 

mu i and the summation of squares of these mu i terms across all the scattered fit points is 

minimized. That is what you do with OLS fitting, ordinary least square fitting of X, Y 

points. However, when we do this kind of fitting with panel data, the following problem 

may arise. Recall our relationship between rit return when it is regressed on our OIB 

variable, order imbalance variable. 

Intuitively you would expect a positive relationship that is when OIB is negative, you 

would expect returns to be negative following prices or OIB to be positive and therefore 

rising prices or positive returns. So therefore a positive coefficient for alpha 1. Now 

imagine, let us say we have time, two time periods t equal to 1 and t equal to 2 and only 

two observations for each security. While the relationship is positive like this, increasing 

like this for all the securities and commonsensically when you would perform this 

regression, you would look at the slope of all these lines individually first and then 

average them out to find the average correlation, this average impact of OIB on returns.  

In this setting, you will find the average impact of all these securities by averaging these 

positive slopes and to get the relationship between OIB and returns. 



 

However, the OLS may not think in this way. What OLS fitting would do is look at these 

points like this and may feel that average fit line with a negative slope like this may be 

more relevant and therefore may, it may turn out that this alpha 1 is negative and even 

significant, which is totally counterproductive and spurious. While this is an extreme case 

or rather more extreme case or spurious case, but it drives on the point very well, how 

panel data may get affected by such vitiating issues. Let us also look at econometrically 

what happens with panel data estimation when done through OLS. Remember this 

equation, which captures the impact of OIB on returns. 

 

Here, we noted that alpha i, the unobserved heterogeneity is not accounted for by any 

variable. It may be size of the security, may be beta of the security. For the time being, 

we will ignore this vt term, which is security invariant term, which is moving with time.  

We may assume that we have modelled it through dummy variable or something like 

that. So we will ignore it for the time and we will focus on this unobserved heterogeneity 

alpha i, which is specific to securities. 



This term, because it is not being explicitly modelled through any variable will get mixed 

with this error mu I t and therefore the resulting error eta I t, let us call it eta i t is 

summation of alpha i and mu i t. So this unobserved heterogeneity gets mixed up with the 

error term, which was supposed to be purely random, purely random term mu i t, which 

varies with i and as well as t. So the subscript i t purely random. Usually, if you recall the 

regression modelling, this would be modelled through some kind of assumption about 

distribution like normal distribution. Now the problem is this new error term, which is eta 

i t carries alpha i, which is more specifically a property of security i. 

𝑟𝑖𝑡 = 𝑎0 + 𝑎1𝑂𝐼𝐵𝑖𝑡 + 𝑣𝑡 + 𝛼𝑖 + µ𝑖𝑡 

𝑛𝑖𝑡  = 𝛼𝑖 + µ𝑖𝑡 [𝛼𝑖: Unobserved heterogeneity] 

Cov(𝑛𝑖𝑡, 𝑂𝐼𝐵𝑖𝑡) ≠ 0 [Problem of endogeneity] 

Cov(𝑛𝑖𝑡,𝑛𝑖𝑡+1)=Cov(𝑢𝑖𝑡 +𝛼𝑖,𝑢𝑖𝑡+1 +𝛼𝑖) ≠ 0 [Problem of autocorrelation] 

And therefore, with the high probability, it is correlated with order imbalance term, 

because order imbalance also varies, may vary with security. For example, size. Now 

alpha i may represent the effect of size on return, but also depending upon the size, the 

OIB may also differ across security, security for example, a particular amount of trade 

volume for a large security may have a different interpretation in terms of OIB while for 

a very small security, the same volume of trade may have a different interpretation. Same 

goes for beta and various other similar parameters. And therefore, there is a high 

probability that this alpha i which is mixed into now the error term and therefore this 

revised error term eta i t may have some correlation with OIB. 

From our knowledge of regression, we already know that this may result in issue of 

endogeneity when your error term is correlated with your independent variable. This may 

further result in issues such as biasness and inconsistency of the estimate alpha 1. 

Another problem which is not as significant as problem of endogeneity, but still 

important problem is that now your new error terms like eta i t and eta i t plus one will 

have a common term which is alpha i and this is true for all the error terms that is eta i t 

minus one, eta i t minus two, eta i t plus one and so on. Because of this common alpha i, 

this covariance of mu i t and mu i t plus one despite the fact that in the original errors, 

there may be no serial correlation. I repeat, even if there is no serial correlation, the 

original error terms mu i ts still this alpha i would have some common correlation and 

therefore this covariance would not be zero non zero. 

It will be some finite quantity and therefore this also introduces the problem of serial 

correlation in error terms. And to summarize overall the pooled OLS estimates will be 

biased and inconsistent of this panel data. To summarize this video, we learned visually 

as well as econometrically that if we do not specifically account for the panel data 



unobserved heterogeneity alpha i specifically and we try to estimate it through pooled 

OLS, the resulting regression may be the estimates from the resulting regression that is 

alpha one are biased as well as inconsistent and therefore vitiate the estimation.   

In this video, we will discuss in a formal manner the least square dummy variable 

approach to panel data estimation. Recall our earlier example of return being regressed on 

order imbalance with a formal model like this where alpha is the unobserved 

heterogeneity which we did not account for specifically the model. 

𝑟𝑖𝑡 = 𝑎0 + 𝑎1𝑂𝐼𝐵𝑖𝑡 + 𝛼𝑖 + µ𝑖𝑡 

 

Now as per the dummy approach, let us say there are n securities s1, s2, s3 and up till sn.  

So, we can use n minus 1 dummy variables like s2, s3 and so on up till sn. And the 

resulting model will appear like this rit equal to alpha naught plus alpha 1 into y bit and 

so on summation an into sn plus mu it, mu it is the error term here. Notice that we have 

not accounted for s1, the first dummy which will be specifically loaded on this alpha 

nought. So, the effect of s1 dummy will be loaded on alpha nought. 

𝑟𝑖𝑡 = 𝑎0 + 𝑎1𝑂𝐼𝐵𝑖𝑡 + 𝝈𝒏=𝟐
𝑵 𝑎𝑛𝑆𝑛 + µ𝑖𝑡 

Now, how to interpret these dummy variables? For example, the first dummy here is the 

s2 and its coefficient alpha 2. So, s2 is the dummy variable that will take a value of 1 for 

security 1 and 0 for all the other securities and similarly s3 will take a value of 1 for 

security 3 and 0 for all the other securities and so on. The coefficient corresponding to s2 

which is alpha 2 reflects the impact of this particular dummy variable or unobserved 

heterogeneity corresponding to security 1 on returns. Similarly alpha 3 would represent 

the unobserved heterogeneity impact of security 3 on returns and so on. While alpha 

nought here would compute or account for the impact of unobserved heterogeneity 



corresponding to security 1 which is not here in this model, but by design will get loaded 

here. 

𝑟𝑖𝑡 = 𝑎0 + 𝑎1𝑂𝐼𝐵𝑖𝑡 + 𝝈𝒏=𝟐
𝑵 𝑎𝑛𝑆𝑛 + µ𝒊𝒕 

If you specifically account by putting all the n variables that is n dummies s1 to sn, then 

what you will fall in what we call as dummy variable trap or the issue of perfect 

multicollinearity and therefore your model will not run. So ultimately, we are explicitly 

accounting for the unobserved heterogeneity corresponding to each security and the 

advantage of this model unlike the previous model that we discussed or some of the panel 

data models and OLS approach as well that you get to estimate the impact of unobserved 

heterogeneity explicitly here. So, you measure that. Let us discuss some of the 

assumptions and conditions that facilitate estimation through LSDV estimator. So, one 

point to remember that once you have accounted for this model through dummy 

variables, now you estimate this through OLS only. 

Cov(𝑢𝑖𝑡, 𝑂𝐼𝐵𝑖𝑡) = 0 

So, you have accounted for the an observed heterogeneity through dummy variables, then 

you use OLS approach to estimate the model. So, this OLS approach or rather LSDV 

pooled model through OLS approach, the coefficients here alpha i's are consistent under 

the following conditions. If the original error term which is mu it the original error and 

the independent variable order imbalance, they have no serial correlation and also there is 

no correlation or covariance between original terms and OIB which is 0, there is no serial 

correlation in errors that is mu it and mu it minus 1 or previous serial, previous terms are 

uncorrelated, this correlation is 0. So, when I say correlation covariance, I essentially 

mean the same thing. So, if the correlation or covariance is 0 and also there is no 

homoscedasticity in error term that means the variance of error term is constant across 

different values of independent dependent variables, it is not systematically varying. 

The variance of error term is not systematically varying which is called homoscedasticity. 

And under these conditions, we can take our estimates of alpha i's as consistent. Later, we 

will also discuss another fixed effects approach. Under these assumptions, the estimates 

from LSDV are exactly identical to fixed effect estimates if these conditions are held in a 

theoretically identical sense. And also the advantage of this approach or FE approach 

which we will later discuss is that in this dummy variable approach, we can estimate the 

unobserved heterogeneity alpha i explicitly unlike FE estimator, fixed effect estimator 

that we later discuss, where we will tend to eliminate them from the model through a 

small and intuitive procedure we will eliminate these alpha i's in the fixed effect 

approach. 

But here, we can explicitly measure it well, which is important if your objective is also to 

measure the impact of alpha i on the dependent variables or return in this case. However, 



the problem of this model is that model is not parsimonious as n tends to increase the 

model become less and less parsimonious and with all the negative or adverse effects that 

come with a not parsimonious model, where so many variables or dummy variables are 

introduced. To summarize in this video, we examine the LSDV approach to paneel data 

methods. We noted how to incorporate or explicitly introduce dummy variables to 

account for the unobserved heterogeneity alpha i in the model. We also saw that if with 

certain assumptions of endogeneity, for example, the original error terms and 

independent variable not correlated, no serial correlation errors and homoscedasticity in 

error terms, then the estimates from LSDV method are consistent. However, with the 

introduction of more and more dummy variables, the model may not be parsimonious.  

In this video, we will discuss the first difference approach to panel data estimation. The 

first difference estimators, let us start with the introduction. So again, we will recall our 

relationship between returns and order imbalance. We assume that the time varying 

effects such as vt are explicitly accounted through dummy variables. 

 

So our focus will remain on individual unobserved heterogeneity, which is security 

specific that is alpha i. Now, the original model we had this alpha i here. Assume in the 

original model, we take a time lag that is for all the terms with subscript t, we take it one 

time before or lag it. So we get the resulting, for example, return as rit minus one. 

Similarly, order imbalance i t will become order imbalance for previous period for 

security i y bt minus one and so on. 

𝑟𝑖𝑡 = 𝑎0 + 𝑎1𝑂𝐼𝐵𝑖𝑡 + 𝛼𝑖 + µ𝑖𝑡 

𝑟𝑖𝑡-1 = 𝑎0 + 𝑎1𝑂𝐼𝐵𝑖𝑡-1 + 𝛼𝑖 + µ𝑖𝑡-1 

For the error term mu i t becomes mu i t minus one, which is one period before. So we 

have equation one which reflects the dynamics at time t equal to t and equation two 



which reflects the relationship at time t equal to t minus one. Let us subtract one from two 

and we will get the resulting term here. So this delta rit is nothing but the difference of 

these two returns. Alpha 0, alpha 0 will cancel each other out or rather we can call it a0 or 

alpha 0. 

𝛥𝑟𝑖𝑡 = 𝑎1𝛥𝑂𝐼𝐵𝑖𝑡 + 𝛥µ𝑖𝑡 

Cov(𝛥µ𝑖𝑡,𝛥𝑂𝐼𝐵𝑖𝑡) =0 

Here the second term would be the delta OIB it and the difference in error. Now as long 

as the covariance or correlation between delta mu i t and delta OIB it equal to zero, the 

model can be estimated with OLS and the estimates of alpha would be consistent. Just a 

quick diversion, I often refer covariance and correlation interchangeably. Correlation is 

just a standardized version of covariance which is covariance divided by standard 

deviation of entity one into standard deviation of entity two. So covariance between one 

and two divided by standard deviation of one and standard deviation two which reflect 

correlation between one and two. 

Now let us see what are the issues with this kind of first difference estimator. So once 

you have this kind of model which is change in returns as a relationship between change 

in OIB where coefficient is a1 plus the error terms which is delta, you artificially 

introduce correlation in error terms. For example, the covariance or correlation between 

change in error terms at t versus change and change in error terms at t minus one has a 

common term which is mu i t minus one. So there is some kind of correlation even 

though the original errors may not have any kind of correlation but still there is some 

correlation driven by this first differencing process, FD process or FD system, FD 

transformation will lead to some kind of serial correlation errors. 

𝛥𝑟𝑖𝑡 = 𝑎1𝛥𝑂𝐼𝐵𝑖𝑡 + 𝛥µ𝑖𝑡 

C𝑜𝑣(∆𝑢𝑖𝑡, ∆𝑢𝑖𝑡−1) = C𝑜𝑣(𝑢𝑖𝑡-𝑢𝑖𝑡−1, 𝑢𝑖𝑡-1-𝑢𝑖𝑡−2) 

Also the original variables ri t and OIB were at levels. However, when we do this first 

differencing transformation, the changes in variables are maybe they may be much 

smaller and therefore the variation in these variables, delta ri t and delta OIB which may 

be very small and therefore the relative values of error and what we call as standard error 

of estimates become relatively larger as compared to the variation in these terms, the 

original variables because now we are looking at these variables as changes not as levels. 

So the variation in the resulting variable may be relatively very small as compared to the 

variation in error and therefore it affects the power of test. Secondly, you also have loss 

of observations due to differencing. If you have n, let us say if you have for each security, 

there is loss of first observation at t equal to one and therefore if there are n securities, 



you have loss of n observations. So here I cannot account for time specific or those are 

the terms that are time independent. 

𝛥𝑟𝑖𝑡 = 𝑎1𝛥𝑂𝐼𝐵𝑖𝑡 + 𝛥µ𝑖𝑡 

For example, alpha i is any term which is time independent will be eliminated in this 

procedure like we saw that alpha i and a0 the constant terms were eliminated which were 

time independent. And therefore in this resulting equation, because all those terms with 

no variance across time will be eliminated, we ought to have sufficient variance and the 

independent variable, they ought to have sufficient variance across time and also for a 

proper estimation, they should also have some variation across city otherwise the 

estimates of this alpha 1 will be very spurious in nature. So we need variation of terms 

not only across time, but also across city as well. To summarize in this video, we saw 

how first difference estimation can help us accounting for or eliminating the unobserved 

heterogeneity, the vitiating effects of unobserved heterogeneity. However, we also saw 

that it comes across, it comes at certain price and cost. For example, loss of observations 

and serial correlation error terms which may vitiate the estimation process to some extent.  

In this video, we will introduce fixed effects estimator, a very important class of 

estimators for panel data. Let us recall the original model where we were examining the 

relationship between order imbalance and returns, where alpha i was the unobserved 

heterogeneity which was vitiating our estimation. Now consider a time-demean equation. 

When I say time-demean that means for every security i, let us say the return variable 

average is taken for all the time. 

 

𝑟𝑖𝑡 = 𝑎0 + 𝑎1𝑂𝐼𝐵𝑖𝑡 +𝜶𝒊 +µ𝒊𝒕 



For example, for security i equal to 1, we take average for all the times from t equal to 1, 

2 and so on up to time t. This time averaging is reflected with this term rit summation t 

equal to 1 to t, rit  divided by t for all i. Now for all the variables including returns and 

order imbalance, we can perform this time averaging and resulting time average equation 

is represented by equation 2. So this is time averages of variables. If we subtract this 

equation 1 from 2, this is called time-demeaning process or time-demeaning 

transformation where I subtract each observation with its corresponding time-demeaning 

value. 

For example, for security 1, rit minus ti bar and therefore we get this kind of transformed 

equation. Notice the set of terms that is time-invariant like alpha i, the time-invariant or 

time average is nothing but alpha itself because it is not changing with time and therefore 

in this subtraction process such terms like alpha and alpha nought that are time-invariant 

will be eliminated. And therefore the resulting equation this rit minus ri bar equal to a1 

into OIB it minus OIB i bar plus error term that is mu it minus mu i bar can also be 

represented as tilde. So we replace this with tilde and write rit tilde equal to a1 into OIB 

tilde it plus error term it. This estimation, this resulting transformed system can be 

estimated with pooled OLS as long as this the covariance between the resulting 

independent variable which is OIB tilde it and error term mu it. 

If there is no covariance or correlation between these, then the resulting system or the 

transformed system can be estimated with pooled OLS and the estimates of a1 will be 

consistent in nature. However, please note that fixed effects also remove time constant 

terms like alpha i and they are also costly because now you have transformed the system 

and you are not estimating the original variables at level but rather this transformed or 

time-demeaned equation the transformed fixed effect system. To summarize this video, 

we discussed the fixed effect estimators and how to obtain the fixed effect transformed 

system that is to be estimated with pooled OLS.  

 



In this video, we will introduce a very important class of estimator that is Random effects 

estimator. Recall in the previous discussions while examining relationship between order 

imbalance and return, we said that there is a high probability or with the issue of 

endogeneity if the unobserved heterogeneity that is alpha i is correlated with one of the 

independent variables that is in this case OIB. 

𝑟𝑖𝑡 = 𝑎0 + 𝑎1𝑂𝐼𝐵𝑖𝑡 +𝜶𝒊 +µ𝒊𝒕 

Cov(𝑂𝐼𝐵𝑖𝑡, 𝜶𝒊) ≠ 0 

So, if this covariance or correlation is non-zero, then there is a possibility of 

heterogeneity which has a high likelihood because there are a number of variables like 

size, beta we have ignored in this model and they may get aggregated or accumulated in 

this alpha i resulting in a covariance or correlation between these two variables. And 

therefore, we said the pooled OLS estimation may not be effective because of these 

issues related to endogeneity, the estimates may be biased and inconsistent and therefore, 

we needed heavy transformations such as first difference or fixed effect methods to 

eliminate this alpha i from the model. However, if you have a strong reason to believe 

that this correlation or covariance between unobserved heterogeneity and or independent 

variable is close to zero, then you need not go ahead for such heavy transformations as 

FD or FE as they require lot of heavy transformation data such as for example, FE 

transformation leads to loss of one observation, it involves variables at rather not at 

levels, it drastically transforms the original model. For example, FD leads to differences 

rather than level. Such drastic radical transformation in the original model are not very 

desirable in that sense and leads to less efficient estimators as we will see later. 

However, if you have a reason to believe in this relationship that this covariance between 

OIB and alpha i is very close to zero, this sometimes is a reasonable assumption in some 

of the cases for example, you may have included all the relevant variables and accounted 

for them and therefore, you have less reason to believe for a large value of alpha i.  

Similarly, a priori from theory you believe that relationship is like this only and the 

presence of alpha i is likely to be very small relative to variables like OIB and therefore, 

this correlation may be almost zero. In this scenario, you may believe that pooled OLS or 

something which is closer to pooled OLS may provide consistent estimates. However, the 

error may still be serially correlated for example, this issue of covariance or correlation 

between revised error terms that is eta it which was original error terms mu it plus alpha i, 

this one may still be there. So, error terms may still be correlated across time and 

therefore, the serial correlation may exist but please note that the serial correlation can be 

easily corrected through random effects transformation without putting a heavy cost on 

data with transformation such as first difference or fixed effect. 



In general, it is noted that random effect is found to be more efficient than pooled or FE 

or FD. Why because it is believed that standard errors of random effect estimates or 

rather I should write beta RE estimates, the standard error of these estimates is often 

found to be lower than pooled OLS or FD or FE estimates. This is a very useful property 

which means the efficiency of this estimator is higher than FD FE or pooled OLS. And 

therefore, if you believe that either you have model very well specified so that sufficient 

variables have been entered in the model. So this covariance this endogeneity problem 

has been resolved that means essentially this is equal to zero. 

So this problem has been resolved or for that matter you have reason to believe that alpha 

is very small then RE is better than FE and OLS and FD as well. And therefore, you can 

use a model like this for example, instead of completely fully time demeaning the model 

you can simply demean with the multiple of lambda which is between zero and one that 

is less than equal to one. And therefore, your resulting question is rit minus ri bar only 

that in the original FE transformation instead of completely time demeaning I am 

demeaning time demeaning with the factor of lambda. So this term is not eliminated you 

notice all the time all the terms which are time invariant they are not eliminated but they 

are still there like a nought into one minus lambda a one into this and eta it minus lambda 

times eta i where eta it is equal to alpha i plus mu it. Now, this is what we call as random 

effect system and this system is estimated with pooled estimation. 

Please note in this if in this model if lambda equal to one this model transformed into 

what we called originally as fixed effect and if lambda is zero then it transformed into 

simply the pooled OLS and therefore, random effects is a sort of in between the spectrum 

of a two extreme ends which is pooled OLS and FE. So neither it is as extreme as FE nor 

as simplistic as pooled model. To summarize this video we noted that if we have reason 

to believe that unobserved heterogeneity alpha which was leading to all the problems 

such as endogenity and so on. If that is very small in magnitude and we have reason to 

believe that it has very low correlation with the independent variables and therefore, issue 

of endogenity is very not so major in our model only the issue of serial correlation may 

exist we can correct for the serial correlation with a rather less drastic transformation of 

the system what we call random effect. So this is sort of quasi time demean unlike the 

fixed effect this is like partial time domain or quasi time demean kind of transformation 

and this transformation is less drastic and the estimates from random effect therefore are 

more efficient as compared to fixed effect or first difference and pooled OLS estimates. 

And the model is remains consistent the pooled OLS estimates of this random effect 

system transformation are consistent as long as we have reason to believe that this 

endogenity problem is not very severe.  

 



In the previous video we discussed how random effects transformation is sort of in 

between two extremities that is pooled and fixed effect. In this video we will examine this 

issue in more detail in an empirical manner. Recall in the previous discussion we said this 

is the transformed random effect system in this system this parameter lambda determines 

the position of random effect between pooled and fixed effect estimator. For example, if 

lambda is closer to it varies between 0 and 1 if it is closer to 0 then the model is pooled 

and if it is closer to 1 then the model is fixed further to fixed effect. 

 

Let's see how it works. So the formula for lambda is 1 minus sigma mu square upon 

sigma mu square plus t times sigma square where t are the time periods whole raise to the 

power 0.5 where sigma mu square is the variance of error term and sigma square is the 

variance of alpha i. Now recall if we have a reason to believe that this sigma square alpha 

that is the variance of unobserved heterogeneity is very very small relative to the error 

term. Let's say believe it is relatively very small or close to 0 then in that case we can 

ignore this and resulting value of lambda is 0. So, in the case where alpha and its size and 

variance is insignificant not very severe then ri converges, random effects converges to 

pooled model. 

Similarly, if relative to error variance if the size and variance of this unobserved 

heterogeneity is quite large and therefore 2 into sigma alpha square is quite large as 

compared to sigma square mu then this term is 0 and lambda becomes 1 close to 0 

asymptotically if close to 0 then this lambda becomes 1 and then random effects 

converges to fixed effect. Also, we noted that unlike fixed effect which is called fully 

time demeaned random effect is sort of quasi time demeaned so we are time demeaning 

but not with a factor of 1 but something which is less than 1 but greater than 0. And 

another advantage of random effect is that it allows us to estimate the time constant term 



for example alpha 0 into 1 minus lambda so it allows us to estimate those time constant 

term that is one great advantage of this method. The way to estimate random effects 

model here is to estimate this system of equation 1 and 2. However the problem is that in 

the first stage it requires estimation of lambda which is not directly observed and 

therefore first you estimate equation 1 through fixed effect for different or OLS method 

so you need to estimate this so that you can find estimates  of error terms as well as you 

try to estimate the unobserved heterogeneity. 

Once you have these terms you can estimate lambda. Once you estimate lambda then 

only you are able to estimate the system of equation 2 and then that is whole model. So 

this combined estimation is the random effect method of estimation and because of this 

sort of transformation where you first estimate lambda and then in the second step you 

estimate the original model this is often referred to as feasible generalized least square 

methods. To summarize in this video we discussed the estimation of lambda a very 

important parameter that empirically evaluates how large is the magnitude of unobserved 

heterogeneity. If unobserved heterogeneity is quite large then you have to go with model 

a random effect model which is closer to fixed effect and if this unobserved heterogeneity 

is very small then you go for a model which is closer to pooled OLS.  

In this video we will talk about some of the assumptions pertaining to random effect 

estimator and also the estimation of the time invariant terms. 

When we talk about consistency of RE random effect estimates asymptotically the 

following assumptions need to be held. So asymptotically random effect estimates have 

to converge to the population parameter a1 then first and foremost unobserved 

heterogeneity needs to be uncorrelated with the order imbalance term so that endogeneity 

properties avoided. So there is no endogeneity. Each cross section is randomly sampled.  

Third the original error terms mu i t are not are their expected value is 0 given your 

independent variable and unobserved heterogeneity. 

 



So, for given alpha i for each security i given alpha i and independent variable X i t their 

expected value has to be 0. No perfect multicollinearity. Please note the last three 

assumptions this cross sectional to be randomly sampled expected value of error term to 

be 0 and no perfect multicollinearity are also applicable to Fe and Fd. So, this first 

assumption is specific to random effect which states that there is no correlation or 

covariance between independent variable and unobserved heterogeneity. 

𝐶𝑜𝑣(𝑂𝐼𝐵𝑖𝑡, 𝛼𝑖 ) =0 

𝐸[𝑢𝑖𝑡|𝑋𝑖𝑡, 𝛼𝑖]=0 

 

Now how to estimate time constant term with random effects in R. So recall our 

transform system of random effect model. This was our transform system. In this 

transform system let us say there is a time constant term size which is specific to 

individual entity i needs to be estimated and introduced in the model. Now because this 

term is time constant as long as the transform model will add another term which is size i 

into 1 minus lambda which is similar to this term and as long as the lambda estimated 

lambda is not equal to 0 that is model is not pooled OLS we can estimate its coefficient 

a2. As long as this lambda is not 0 we can estimate the a2 and we can estimate the effect 

of time constant variable size. 

However please note again for these estimates a1, a2, a0 to remain consistent the 

assumption pertaining to random effects that is covariance between this time invariant 

term size and OIB needs to be 0. To summarize in this video we discussed some of the 

assumptions that are required for random effect estimators to be consistent some of the 

main assumptions and also we saw how to estimate time constant or time invariant terms 

with random effect model in our environment.  



In this video we will discuss a comparison between fixed effects and random effects 

estimators. We will see what are the conditions that are more suitable to fixed effects vis-

a-vis random effects and we will also examine the Hausman test as a selection criteria 

between fixed effects and random effects. In particular the most important condition 

while comparing fixed effects and random effects is the covariance or correlation 

between the unobserved heterogeneity alpha i and the independent variable xi whether it 

is equal to 0 or not. 

If it is equal to 0 maybe for different reasons for example probably, we have accounted 

for all the relevant variables so that the magnitude and variance of alpha i is very small 

and in that case both the fixed effects and random effects are consistent because all those 

problems related to endogenity and so on are not there and therefore both the estimates 

fixed effects and random effects are consistent. However, as we noted earlier the 

efficiency of random effect is higher because the standard error of the random effect 

estimate is lower than the fixed effect estimate. In fact, it is lower than first difference 

and well as pooled estimate as well if this condition is true and therefore in this case, we 

choose random effect over fixed effect because these estimate both the estimates are 

consistent but the efficiency of random effect is higher. Also, one advantage is that 

random effect estimation allows for the estimation of time constant terms on dependent 

variables. 

 

For FE that is slightly more tricky and not so easily possible. Also, in the second 

condition where this correlation or covariance between unobserved heterogeneity and 

independent variable is not necessarily 0 then all those problems related to endogenity 

may appear and estimates may not be consistent. In that case only fixed effect estimates 

are consistent and RE estimates are not consistent. Although still the efficiency or the 



standard errors of random effect estimate is lower but because of this consistency 

property because that is for more desirable for us we will go ahead with fixed effect 

estimator. This particular dynamics can be tested with the help of Hausmann test. 

Cov(𝛼𝑖, 𝑋𝑖𝑡)=0 

Cov(𝛼𝑖, 𝑋𝑖𝑡)≠ 0 

The Hausmann test statistic can help us in the selection criteria. Let us see how. Let us 

examine the Hausmann test statistic and its hypothesis. The null hypothesis here is that 

this covariance between alpha i, unobserved heterogeneity and X it equal to 0 and 

therefore both the models RE and FE are consistent and because of its higher efficiency 

we should be able to use RE. So, RE is better than Fe in this particular null hypothesis.  

The test is designed in a manner that on numerator you have the difference between fixed 

effect and random effect estimates and denominator has their variances. 

 

So, this statistic is distributed as a chi-square with 1 degree of freedom. So, it appears 

something like this, the chi-square statistic with 1 degree of freedom. If the null 

hypothesis is true that is both the estimates are consistent and therefore both beta FE and 

beta RE they converge to the two population parameter beta and therefore the numerator 

is approaching 0 while the denominator because we already know that this number is  

lower than the variance of beta FE because random effect are more efficient, this number  

approaches to 0 because of the numerator and therefore we fail to reject the null that  is 

we are somewhere here closer to 0 and we choose the random effect estimator that is  

both the model we conclude that both the models are consistent and we choose the 

random  effect. However, if we reject the null and when we will reject the null in the case 



where the both the estimators are not consistent and therefore there is a substantial 

difference  between them and the difference is so large that not only it is much larger than 

their differences in their variances, it is so large that we are able we are in the rejection 

region, we are able to get the hypothesis, null hypothesis and therefore we are in this 

rejection region which leads us to believe that this covariance is not 0 because in that is 

the only that is the case when this both of these will not be consistent, fixed effect will 

anyway be consistent, random effect will not be consistent and there will be substantial 

gap between  them. So, when we are rejecting the null, we assume that there is a lot of 

gap between these two in case we are in the rejection region and therefore not only 

random effect is not consistent, it is way further apart from the fixed effect. 

 So, we choose the fixed effect. So, essentially if you look at this test statistic, the 

numerator is sort of consistency property and denominator is sort of efficiency. So, here 

we are looking for a sort of trade-off between consistency in numerator for efficiency in 

the denominator. To summarize this video, we discussed the condition in which we 

should use random effect or fixed effect. We noted that this covariance between 

unobserved heterogeneity and X it independent variable, is what determines whether we 

go ahead with random effect and fixed effect. We also saw the construction of Hausman 

test and how it helps us in determining depending upon acceptance or rejection of null to 

choose random effect or fixed effect. 

So, if we fail to get the null, then we consider both the statistics fixed effect and random 

effect as consistent and therefore we go ahead with random effect for its efficiency.  

However, if we reject the null, then we believe that not only fixed effect is consistent, 

random effect is inconsistent and way out of the mark and therefore we go ahead with the 

fixed effect as consistent.  

In this lesson, we discussed panel data methods. We started with a brief discussion about 

panel data properties. We highlighted that the unobserved heterogeneity associated with 

panel data makes OLS estimation of our choice. The estimates are biased and 

inconsistent.  

We started with the least square dummy variable approach where dummy variables 

provide an easy and simple solution to deal with this unobserved heterogeneity. Next, we 

discuss how first difference approach can be very useful in tackling the problems 

associated with this unobserved heterogeneity by simply eliminating time invariant terms. 

Next, we discussed fixed effects approach which is effectively time demeaning the 

properties of the data. This approach also leads to eliminating time invariant terms and 

leading to unobserved heterogeneity reduction. Next, we discussed random effects 

approach which is somewhere between two extremes that is pooled and fixed effect 

approaches. 



Random effects approach, quasi-demeans the data when the issue of heterogeneity is not 

as severe and only serial correlation in others is the main issue, the fixed effects is rather 

more extreme treatment. In this case, random effects can account for serial correlation 

and do the job satisfactorily. We also discussed the intuition behind the Hausmann test to 

select between random effects and fixed effects methods. Essentially, Hausman test 

evaluates the trade-off in estimation across consistency and efficiency. While RE 

estimates are more efficient and if the unobserved heterogeneity issue is not that severe, 

then both random effects and fixed effects are consistent. 

Hence, random effects become more suitable. However, if the unobserved heterogeneity 

is a major issue, then only fixed effect is consistent and suitable. Thank you. 


