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Lecture- 27 

In this lesson, we will introduce various volatility models such as exponential weighted moving 

average models, autoregressive conditional heteroskedasticity ARCH models and generalized 

ARCH models.  We will start the discussion by providing some stylized empirical phenomena 

that result  in nonlinearity in the relationships pertaining to volatility and risk and therefore the 

subsequent  requirement of nonlinear models in the context of risk and volatility.  These 

phenomena include negative skewness, excess kurtosis, volatility clustering and  leverage effects 

often associated with volatility in financial markets.  We start by introducing historical volatility 

models and implied volatility models.  Next we discuss conditional volatility models.  Then we 

discuss the shortcomings of these models that result in more advanced models such as EWMA  or 

exponential moving average model. 

 

  The phenomena of volatility clustering leads to ARCH class of models.  However, the ARCH 

class of models are less parsimonious.  This requirement subsequently leads to more sophisticated 

GARCH family models.  In the GARCH family model, we discuss standard GARCH11, 

EGARCH and GJRGARCH models. 

 

 In particular, these advanced GARCH models are extremely useful in capturing the volatility 

clustering and leverage effects observed in financial markets.  In this video, we will study the 

background and motivation behind studying nonlinear models in the context of volatility and risk 

modeling.   



 

 

In finance and economics, most of the models are linear in nature.  For example, have a look at 

this model  

𝑌 = 𝛽1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝜇  

and then this error term mu are more compactly in a matrix form  

𝑦 = 𝑥𝛽 + 𝜇 

where error term is often assumed to be distributed with a normal distribution and zero mean and 

variance of sigma square.  The properties of linear estimators such as OLS to estimate this kind of 

linear model are well researched and understood. 

 

  Moreover, many models that appear to be nonlinear in nature can also be made linear through 

suitable transformations.  For example, a model like Y equal to alpha plus beta X square, we can 

take the log of for example Y equal to alpha plus alpha into e to the power beta X. Such model 

can be made linear by taking log transformations.  So there are number of ways through suitable 

transformations such relationships can be made linear.  However, in particular the relationships 

pertaining to risk and volatility in finance are often considered for nonlinear modeling. 



 
 

  Let's explore why.  One of the very important property of financial market returns is called 

kurtosis.  While the normal distribution assumes a kurtosis of 3, the financial return data often 

does  not agree to that.  For example, it often exhibits something called leptokurtosis where it 

exhibits excess kurtosis that is excess peaked Ness for example as compared to the normal 

distribution here in dotted  form.  The actual return distribution may be excessively p and also 

exhibit fat tails. 

 

  So it exhibits fact tails that means higher probability in extremities, extreme probability as 

compared to that predicted by a normal distribution.  So, it has evident fat tails and excess 

peakedness which makes it difficult to model through linear relationships that assume normality.   

 



The next important property studied in financial markets is the symmetry of distribution.  And 

often it is found that unlike the predictions of normal distribution which says for example here in 

the blue curve, it's very symmetric on both sides, positive and negative.  However, actual 

financial market returns exhibit negative skewness. 

 

  That means there is a high probability of negative events, negative events as compared to 

positive side.  So, this is skewed sort of skewed distribution and it is often negatively skewed.  

So, there is a high probability of negative returns being observed.   

 

 

Another very important property is volatility clustering or volatility persistence.  That is in 

financial markets, you tend to find clustering of high volatility periods as well as clustering of 

low volatility periods. 

 

 For example, here you can see clustering and munching of high fluctuations and clustering and 

munching of low fluctuations together which suggests that period of high volatility  occur 

together while periods of low volatility occur together.  This kind of phenomena is slightly 

difficult to model through linear relationships as it indicates some kind of autoregressive nature in 

volatility.   

 



 

Another stylized fact of volatility clustering and persistence is that shifts from high to low and 

low to high volatility are not uniform.  That is low to high volatility shifts are more abrupt.  You 

suddenly find jumping from low to high volatility while shifts from high to low that is in this  

fashion are more gradual. So, shifts from high to low volatility are more gradual while low to 

high volatility are more sharp.   

 

 

The next property which is very critical is called long term mean reversion.  That is volatility of 

assets tends to gravitate towards long term mean.  Generally this long term volatility level is sort 

of inherent level of volatility which  irrespective of whether there is some information or not or 

whatever market conditions, this  long term mean volatility always persists.  Researchers believe 

that this is driven by microstructure volatility. 

 

  For example bid-ask bounds.  So, phenomena that are part of market microstructure such as bid-

ask bounds lead to this all-time inherent volatility of financial markets.   

 

Lastly a very stylized fact is leveraging effects.  It is often observed that volatility rises more 

following periods of falling prices and as compared to that when prices are rising volatility is less.  



For example, during the rising periods volatility is less and falling periods there is a higher 

volatility. It is often argued that when prices are falling the leverage that is debt to equity ratio 

increases.  Inherently debt to equity ratio is a measurement of risk.  A higher debt to equity ratio 

indicates a high-risk level and therefore there is a feedback sort of loop created.  That means if 

prices are falling and debt to equity ratio is rising inherently company becomes more riskier and 

therefore this further contributes to additional risk or additional volatility to the already existing 

levels of volatility and therefore it is said that volatility rises more falling price fall than as 

compared to that during the rise of the price of the same magnitude.  To summarize in this video, 

we discussed some of the stylized fact of volatility and risk that require us to model the 

relationships near to volatility risk for nonlinear modeling. For example, we said that volatility in 

financial markets or distribution of returns exhibits excess kurtosis as compared to normal 

distribution.  It is negatively skewed.  We also observed volatility clustering, that is high periods 

of high volatility are clustered together.  We also observed what we call leverage effects, that is 

volatility rises more during falling prices as compared to that during rising prices.  We also 

discussed that there is some kind of long term mean reversion property of volatility and also the 

transition to high volatility periods from low volatility periods are more abrupt while those from 

high volatility to low are more gradual. 

 

  

 In this video we will discuss volatility and its theoretical underpinnings behind the computation 

of volatility and as a mathematical measure to proxy risk.   

 

 

Recall that volatility or denoted by sigma is the standard deviation of returns per unit of time 

when returns are continuously compounded.  For example while we are considering daily 

volatility this is the standard deviation of continuously compounded returns per day.  So the 

formula for continuously compounded returns is natural ln (
𝑃𝑡

𝑃𝑡−1
) and when you take the standard 

deviation of continuously compounded returns for a period let us say our day then that number is 

the standard deviation of daily returns.  Let us take an example. 

 

  For example if your current price is sixty dollar and it is given to you that standard deviation or 



daily volatility or standard deviation daily standard deviation is two  percent that means on 

average the stock moves by up and down by one point two dollars on  a given day,  so average 

movement. Or in a more concrete manner if you want to translate your understanding  through a 

probability distribution like normal distribution let us say you believe that returns  are normally 

distributed with a mean zero or  zero percent  and you want to know the ninety five percent 

confidence interval for return these two cut  offs if you believe that returns are normally 

distributed then these ends ninety five percent  ends these markers are one point nine six minus 

one point nine six and plus one point  nine six that is two point five percent probability here 

extreme probability two point five percent  probability here extreme probability and in between 

you have ninety five percent confidence  interval.  If that were to be the case then your window of 

ninety five percent interval of returns is one minus one point nine six zero percent minus one 

point nine six into two percent this is on the lower side of it which is minus three point nine two 

percent the upper side is very also symmetric so it is zero percent plus one point nine six into two 

percent which is again three point nine two percent.  So effectively if you want to know that the 

range of the price that will be sixty dollars into one minus three point nine two percent and sixty 

dollar into one plus three point nine two percent. So, this will be your price lower range lower 

level and upper level of prices with ninety five percent confidence band. 

 

  

 Another very important property of volatility that is driven by simple volatility models is that 

they assume that the volatility remains constant at each day. Basically the assumption is that your 

returns are independently and identically I distributed. So returns are IID that means they are 

independently and identically distributed which is to suggest  that first the distribution remains 

same that means the standard deviation or volatility  remains constant for each period each day at 

some level sigma.  So whatever this level is it is constant each day and the distribution remains 

same and  also returns are certainly not correlated. If these properties are held then a resulting  

property is that variance over t periods is t times the variance of one period or in  other words 

volatility when measured through standard deviation it increases with the square  root of time. 

 

 Let's understand what it means. In the previous example we said that daily  volatility was two 

percent and we want to convert into five day volatility which means  five periods. So what we'll 

do is we'll multiply the standard deviation value of two percent  with the square root of the period 

t which is five. So we get a value of four point four  seven percent or in dollar terms sixteen to 



four point four seven percent which is  two point six eight. What it means now that if you want to 

know the average expected change  in a period over a period of five days then it can be either plus 

minus two point six  eight dollars it can go up or down by two point six eight dollars. 

 

  Let's also think in terms of what it means if you want to have a ninety five percent  confidence 

interval. Again recall that we said these lower and upper ends of this if  we believe that follows a 

normal distribution then these ends are one plus minus one point  nine six and if the mean the 

returns are distributed with a mean of zero percent then the lower  end of the return is zero 

percent minus one point nine six into four point four percent  which is eight point six percent. 

Similarly the upper end is zero plus and with symmetry  it is again plus eight point seven six 

percent.  It was minus. So now if I want to know the average movement in my return the price 

return  we saw now if I want to know the price it will be simply 60 ∗ (1 − 8.76%) and upper 

level would be60 ∗ (1 + 8.76%) 

 This would be my price bank for a five year period with an expected up and down  moment and 

return of eight point six seven six percent with ninety five percent confidence  level. 

 

 

 To put it more succinctly let's say if you have monthly standard deviation Sigma monthly is 

given at some level if you want to know the annual standard deviation you  want to analyze it you 

simply multiply it by square root of twelve where t is equal  to twelve periods. Similarly if Sigma 

daily is given to you you analyze it by multiplying  number of trading days which is 252 trading 

days so you multiply it by square root of  252.  To summarize this video we discussed the 

mathematical underpinnings behind the computation of standard  deviation or volatility as a risk 

measure. We noted that it is the standard deviation  of continuously compounded returns for a 

given period and to translate it to different periods  we multiply the standard deviation measure 

by square root of the time periods. 

 

 For example  if you wanted to convert the daily standard deviation to annual you multiply it by 

number  of trading days in the year which is square root of 252 and so on for monthly and weekly  

periods. However this result is given by a simple assumption that returns are IID that  is they are 

identically and independently distributed that is there is no serial correlation  in returns across 

period by period and also the distribution of returns period by period  remains the same which 



means the standard deviation is same at some level Sigma which  does not change over period by 

period. However this seems to be a slightly difficult assumption  to sustain.   

 

In this video we will discuss two very fundamental models of volatility that is historical volatility 

models and implied volatility models. While these models are very simplistic and obviously  they 

face certain challenges in their assumptions still they provide the backbone and fundamental  

building blocks to more advanced models that will be discussed subsequently in this lesson. 

 

   

To begin with we start with the historical volatility models. These are the most simple  volatility 

models and they rely on historical estimate of the volatility or what we call  as variance or 

standard deviation of returns. The standard deviation is computed simply  from past returns and it 

becomes the best estimate for future volatility of returns  if certain assumptions such as returns 

are independently and identically distributed  or they are IID holds true. This model is very useful 

and easy to calculate for example  the variance is nothing but deviation mean deviation squares 

divided by n minus 1. In  some theoretical values you use n while n-1 is more of a sample 

characteristic  to get a more unbiased estimate of volatility because generally it is assumed that 

we are  working with samples not the population of returns. 

 

 However as you would have guessed  it this model has a very fundamental problem that it gives 

equal weight to all the historical  returns which is not a very good property. Generally you would 

like to give more weight  to more recent observations of returns. The next set of models are 

implied volatility models that rely on some kind of option pricing formula such as Black-Scholes. 

So for example  any option pricing model would use volatility as input along with some other 

parameters  such as risk-free rate, strike price and current value of underlying to compute the 

option  prices. The idea behind these implied volatility models is to use the observed value of 

parameters  such as risk-free rate, option prices, strike prices and so on to back calculate the 

implied  volatility from these models. 

 

 Now essentially this implied volatility is the market forecast  of the volatility of underlying asset 

returns over the lifetime of the option.  To summarize in this video we discussed two very 

fundamental models that is historical  volatility model and implied volatility models. While these 



models are simple to understand  and very intuitive the assumptions behind them are not very 

tenable in real life phenomena  but still these models are widely held and employed because as 

such they provide the  very fundamental building block to more advanced models as we will be 

discussing in subsequent videos.  In this video we will introduce the concept of conditional 

volatility which is based upon  the fact that more recent factors or more recent information arrival 

has more influence  on the volatility levels observed currently. The idea behind conditional 

volatility models  is to give more weight to recent periods. 

 

 

 Let's start with the mathematical or theoretical underpinning behind this idea. Recall we said 

some kind of relationship in financial markets like  

𝑌 = 𝛽1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝜇  

Y equal to beta 1 plus beta X 2 and so on with an error term mu t is expressed like this where in 

vector or matrix form you can write 𝑦 = 𝑥𝛽 + 𝜇. Generally  it is assumed that mu t or error term 

or in financial markets the information term is  normally distributed with a zero mean and 

constant variance sigma square. Now if you  want to know the conditional variance of this error 

term it is simply variance of mu  t given mu t minus 1 mu t minus 2 and so on that is conditional 

to the historical information  like mu t minus 1 mu t minus 2 mu t minus 3 what is the variance of 

this mu t so that  is conditional upon historical information rivals which is also written as 

expected value  of mu t minus mu expected mu t square which is the nothing but mean deviation 

square what  we have already seen earlier mean deviation squares of mu t conditional to previous 

historical  information levels like mu t minus 1 mu t minus 2 and so on. 

𝜎𝑡
2 = 𝑣𝑎𝑟(𝜇𝑡|𝜇𝑡−1, 𝜇𝑡−2, … . ) = 𝐸 [(𝜇𝑡 − 𝐸(𝜇𝑡))

2
|𝜇𝑡−1, 𝜇𝑡−2] 



 Now let's translate this  understanding in the context of financial markets. 

 

 

 Imagine a relationship like this  in financial market like return at time t is being regressed on 

historical returns lags  like r t minus 1 plus r t minus 2 and so on up till certain period plus a 

certain error  component. Please note in this kind of model the error term mu t would indicate the 

information  that has arrived in the current period so after accounting for all the lags of returns  or 

serial correlation returns whatever left in mu t is nothing but the latest information  and therefore 

it is often called a measure of information or innovation which proxies  the latest information 

arrival. Now the conditional variance of this mu t or sigma square t is  what we call as conditional 

volatility or conditional variance which is conditional  upon historical information or innovation 

such as mu t minus 1 mu t minus 2 and so on.  As we have said earlier it is nothing but expected 

value of mean deviation squares that  is mu t minus expected value of mu t whole square 

conditional upon mu t minus 1 mu t  minus 2 and so on. Now recall assumption that this expected 

value of mu t is 0 so we can  simply write the sigma square t as variance of mu t conditional upon 

mu t minus 1 mu t  minus 2 and other historical information points which is nothing but expected 

value of mu  t square or simply the variance of current period innovation or information that is 𝜇𝑡
2 

given the information or conditional to information that is 𝜇𝑡−1, (𝜇𝑡−2), and so on. 

 

 The above equation that we discussed provides the conditional variance of 𝜇𝑡that is zero mean 

normally distributed variable. The conditional variance is basically here  equal to conditional 

expected value of squared mu t's. Now let me give you the intuition  behind conditional volatility. 

Think of a string which is held at two ends A and B and  it is very tight a jerk is given at end A so 

it starts fluctuating. The jerk was given  at time t equal to t naught and they start fluctuating as 

time passes the jerk becomes  smaller and smaller and smaller. 

 

 Suddenly at time t equal to t1 you give another t equal  to t1 you give another jerk and again the 

fluctuation starts. Now please recall there  was already some effect of the previous fluctuations 

which will still sustain and added over to  it the jerk or hit that you gave at t equal to t1 that also 

contributes to it. So there  are essentially the historical fluctuations in the string and more recent 

fluctuations.  Obviously the impact of more recent fluctuations will be higher as historical 

fluctuations  will die away. But if I want to know what is the impact of this latest hit or latest  

information or latest jerk to the string I need to somehow model out I need to somehow  model 

out the historical jerks or historical fluctuations. 



 

 Once I model out or extract  the historical information or fluctuation impacts on the string then 

only I would be  able to measure the impact of this jerk or information that came information 

shock that  came at time t equal to 1 and that is what we mean when we say that what is the 

variance  conditional to the previous historical information shocks or information arrivals that is 

mu  t minus 1 mu t minus 2 conditional to them what is the current variance or impact of  shock 

that is mu t. So this is how we develop the intuition. To summarize in this video  we saw the 

intuition and understanding of conditional volatility. The concept of conditional  volatility derives 

from the fact that recent periods or recent information arrival has  more say on the volatility 

levels and we need to in order to understand this we need to  model out or sort of extract the 

historical information shocks so that we get a more pure  and more sharp measure of recent 

volatility conditional to historical information shock  or information arrivals.  

 

In the previous video we discussed historical volatility models and we said about these models 

that they give equal weight to all the historical observations no matter how fast or further in time 

this information may be. 

 

 Obviously this kind of  mechanism is problematic and this leads us to what we call as 

exponentially weighted  moving average models. In this video we will introduce EWMA or 

Exponentially Weighted Moving  Average models and see its mathematical formulation and 

theoretical independence behind it.   

 

To begin with these models argue that the forecast of volatility or estimate of volatility  should 

provide a higher weight to recently observed volatility or observations while  a lower weight to 

those observations that are much further in past. These are simple  extensions of historical 

volatility models that allow more weight to recent data. The  effect of past volatility event decays 

exponentially as the weights attached to them fall. 

 

 Now  we will see how this works mathematically but just to give you some intuition suppose  the 

given particular period end is in past t-n 𝜎𝑡−𝑛
2 has a particularly high  level of volatility. Now as 

per the historical volatility model as long as this model this  particular observation is included in 



the model it will lead to heightened level of  volatility. However even for a single period as soon 

as it goes away its exclusion would  lead to sudden fall in volatility levels. Such drastic 

fluctuations in volatility forecasts  are not desirable and therefore EWMA models precisely 

account for this fact by exponentially  decaying the impact of this particular level of innovation or 

volatility on the volatility  estimates. 

 

  

Let us see how this works mathematically. This is the formula for EWMA model which gives  

sigma square t equal to lambda into sigma square t minus one plus one minus lambda into  mu 

square t minus one  

𝜎𝑡
2 = 𝜆 ∗ 𝜎𝑡−1

2 + (1 − 𝜆) ∗ 𝜇𝑡−1
2  

where sigma square t is the estimate of variance for today using  historical information. What 

kind of information? First lambda which is the exponential decay  parameter. Customarily the 

values are like 0.9 or 0.8 in this range. Sigma square t minus  one is the estimate of volatility day 

before while 𝜇𝑡
2 is the information or innovation  term which is usually extracted from the 

squared residuals or many times it is directly  proxied by the square residuals on time t. Now in 

this model just imagine the impact  of the sigma square t minus one as time passes for example its 

impact on sigma square t plus  two and so on let's say on 50th period sigma square t plus 50. A 

little bit of visualization  and imagination about this model would suggest that as the time passes 

this factor will grow  by exponentially by let's say lambda to the power two lambda to the power 

three and so  on lambda to the power 50. 

 

 As long as this value is less than one like 0.9 or 0.8 this  value very exponentially decays and 

almost becomes zero in a very few steps and that  is a very desirable property of EWMA models 

in that they exponentially decay the impact  of historical volatility estimates and slightly give 

more weight to the more recent volatility  levels. Let's do this in more mathematically engaged 

manner. So we started with this formula   

 



 

where sigma square t was the estimate of volatility today using estimate of volatility yesterday  

and the information or innovation on return squared terms that arrived yesterday. Now  in this 

model we can also write in terms of t minus one for t minus one day this will  become t minus 

two and this will become t minus two. We can substitute this value here  to get lambda and then 

this multiple which is this sigma lambda into sigma square t minus  two plus one minus lambda 

into mu square t minus one plus the original term of one minus  lambda into mu square t minus 

one. 

 

𝜎𝑡
2 = 𝜆 ∗ 𝜎𝑡−1

2 + (1 − 𝜆) ∗ 𝜇𝑡−1
2  

𝜎𝑡−1
2 = 𝜆 ∗ 𝜎𝑡−2

2 + (1 − 𝜆) ∗ 𝜇𝑡−2
2  

𝜎𝑡
2 = 𝜆 ∗ [𝜆 ∗ 𝜎𝑡−2

2 + (1 − 𝜆) ∗ 𝜇𝑡−2
2 ] + (1 − 𝜆) ∗ 𝜇𝑡−1

2  

 

 Now we can take away these error terms or mu square terms together mu square is nothing but 

the innovation or error or information that has arrived on a particular day. So this becomes one 

minus lambda into mu square term for t  minus one and lambda times mu square t minus two. 

Now notice as we keep on going further  historically in time it will start multiplying with lambda. 

So for example the mu square  t minus three term would be like lambda square into mu square t 

minus three. Then next term would be lambda cube mu square t minus four and so on and as we 

keep on going further historically in time for example lambda times n minus one mu square t 

minus n. 

 

𝜎𝑡
2 = (1 − 𝜆)(𝜇𝑡−1

2 + 𝜆 ∗ 𝜇𝑡−2
2 ) + 𝜆2𝜎𝑡−2

2  

𝜎𝑡
2 = (1 − 𝜆) ∑ 𝜆𝑖−1 (𝜇𝑡−𝑖

2 ) + 𝜆𝑚 𝜎𝑛−𝑚
2

𝑚

𝑖=1

 

 So this way this expansion can be done as we go on historically in past and this observation as 

we have seen  it will keep on moving further in time t minus three and so on lambda square sigma 

square  t minus n as we keep moving historically in time. So a generic term like this would be  

obtained where the innovation term has this summation series one minus lambda summation  i 



equal to one to m lambda to the power i minus one while the estimate historical estimate  of the 

sigma has lambda to the power m into sigma square n minus m kind of term and if  and if this is 

sufficiently large for example for sufficiently large values of m this term  will converge to zero 

because lambda to the power m where it tends to infinity is equal  to zero. So this term will 

converge to zero and we are only left with this generic term.  So this is a more generic formula 

for EWA model while the previously what we started  with this this one is a more basic and easy 

to interpret formula of EWA which gives that  certain weight decay parameter assigned to 

estimate of volatility sigma square t minus  one and one minus lambda assigned to mu square t 

minus one which is the information or innovation  or volatility arrived today or rather saying 

today it's t minus one. So depending upon  whatever I'm forecasting it's immediate previous 

period. 

 

  

So looking at this model what happens  if we change the value of lambda the decay parameter a 

very low value of lambda puts  a high weight on recent return volatility and therefore estimates of 

volatility are  volatile. So for example if you choose a very sort of low value in this formula 

sigma t  square equal to lambda times sigma square t minus one plus one minus lambda into mu  

square t minus one if you choose a very low value close to zero then this term will go  away and 

all the weight is assigned to the latest information or innovation or volatility  residuals arrived mu 

square t minus one. So all the weight is given here. However while  this is this estimate would be 

very informative in terms of its recency but it will be very  fluctuating it does not account for 

historical levels of volatility. In contrast if you take  a very high level of lambda let's say close to 

one then almost negligible weights will  be assigned to the recent levels while more weight 

assigned to the historical levels. 

 

  So that is sort of trade-off between recency and reliability of the volatility estimate.  To 

summarize in this video we discussed EWMA models of volatility. We said that these  models are 

driven by the fact that previously historical models they do not account for  the fact that more 

recent levels of volatility should be assigned a higher weight while computing  the volatility 

estimate. So this leads us to either the search of more efficient volatility  models leads us to 

EWMA models which give not only give more weight to recent observations  but also the weight 

of historical observation does not decay in a very sort of radical or  one zero kind of manner it 

gradually or exponentially decays over time. So it is not that till the  time the observation is part 

of sample its entire impact is there and as soon as it goes  out of the sample or excluded from the 



sample it has zero impact. So this was the working  of historical volatility model in a EWMA 

model there is a gradual sort of decay. So when  the observation is excluded from the sample it is 

not that it is having a very sharp impact  on the volatility estimate it will not happen with the 

EWMA but it will happen with the historical  model.  

 

In this video we will try to understand the mathematical workings and theoretical  interpenings 

behind EWMA model with the help of a simple example.  

 

Consider the following  information the decay factor lambda is 0.9 the volatility estimated on day 

t that is  sigma t is 1 percent the returns on day t that is rt or volatility on day t or mu t  observed 

rather we can call it observed volatility or volatility innovations mu t or r t square  under root 

square t or 𝜇𝑡 we can call this as 2 percent or volatility observed on given  day or rather realized 

volatility you can also call it realized volatility or observed  volatility on given day t is 2 percent. 

 

 Now we want to compute the EWMA exponential being  moving average estimate of the 

volatility on t plus 1. Let us see how this works. As  per the information given to us lambda is 0.9 

sigma t is 1 percent and this is daily  for daily period and return on day t is 2 percent. 

 

 

 So from this we can estimate we can  proxy this to mu t as 2 percent. Now using our formula 

sigma square t plus 1 which is  equal to lambda times sigma square t plus 1 minus lambda into r 

square t. Now we know the value of lambda 0.9 we also know the value of sigma square t which 

is square of this  which is 0.01 square then 1 minus lambda is this and r t square is 0.02 square. So 



r t  square is being used to proxy the volatility innovations on mu t square. So we get this  value 

as 0.00013. We can take the square root of this to get sigma t as. 

 

  Here sigma t plus 1 which is the square root of sigma square t plus 1 as 1.14 percent per  day. So 

now note that for period t the expected value of r square t is sigma square t so expectation  of r 

square t or the volatility on tth day was 0.0001 or 1 percent which was lower than  the actual 

value. So the realized or actual value was 2 percent that is in terms of volatility 0.0004. What 

does this convey to us? So for example because of this increase so from the  historically observed 

the lower level of 1 percent now the volatility has increased by  a shock of 2 percent. So this r t is 

like a shock of 2 percent. This is sort of positive shock of 2 percent. The volatility on a given day 

is higher at 0.0004 or sort  of in percentage terms 2 percent mu t is 2 percent and this is where 

estimated future  value of volatility is more than estimated on the previous day more as in it is 

more  than this 1 percent so previous day estimate was 1 percent but now it has increased by  0.14 

percent to become 1.14 percent because the current day latest shock on volatility  was 2 percent 

which was on the positive side slightly higher. So that is why this estimate  has increased. To 

summarize in this video we saw how to compute  EWMA measure of volatility for a simple 

numerical example. We saw that depending upon the latest  more information the latest 

information show whether positive or negative the recent estimate  of volatility changes the recent 

estimate of volatility changes depending upon more  recent observations. Now it also depends on 

the decay factor lambda how much weight  we assign to these recent observations. 

 

 For example if this decay factor is zero for example  if this decay factor is very close to zero very 

small then almost all the weight is assigned  to the recent observations if this decay factor is close 

to zero. However if this decay factor  is very large decay factor tends to one then almost all of the 

weight goes to the historical  volatility estimates and these volatility estimates essentially depend 

on the previous  level of volatility levels which were must historically further apart while more 

recent  observations get a weight of 1 minus lambda so if lambda value is very high these recent  

observations do not get a very high weight and therefore the selection of value of lambda  it is 

sort of compromise between sort of trade off between more recent observation or more  

reliability. So if you give more weight to more recent observation that is RT square  your estimate 

will be very noisy very fluctuating but if you get very less value to it your  estimate would be less 

timely it will be sort of average of historical values of historically  estimated values and therefore 

not reflect a very timely signal to you of volatility.   

Previously with the class of EWMA models we captured a very simple yet powerful idea that  all 

the observations all the innovations should not get equal weight while estimating volatility  and 

more recent observations should get a higher weight. A natural offshoot and a more  systematic 

and robust offshoot of this concept or the idea conveyed by EWMA model is ARCH  family of 

model which capture this fact that volatilities auto correlated or auto regressive  in a very 

systematically and mathematically more robust manner. 

 

 In this video we will  introduce the ARCH family of models and their mathematical modeling.   



 

The motivation behind ARCH family of models is the empirically stylized fact of a certain  

returns called volatility clustering that is there are periods of prolonged periods  of calm and 

tranquility in financial markets and then there are periods of bust and periods  of calm and 

tranquility occur together while periods of bust also occur together. This  is called volatility 

clustering under the auto regressive conditional heteroscedasticity  or ARCH specification this 

auto correlation is volatility is modeled by allowing the conditional  variance and we have already 

discussed what is the conditional variance 𝜎𝑡
2on the previous value of squared errors or mu t s or 

what we call as innovations or information  shocks that are employed to model the conditional 

variance or𝜎𝑡
2.   

 

 

In the ARCH family of models let us start with what we call as ARCH(1) specification.  In 

general the arch model or any volatility model is a combination of mean or sort of  return model 

which appears like this a linear function of y return y here would be return  some function of 

some exogenous variables and some lags of returns a linear function  which appears like this and 

an error term which is the sort of information or innovation  shock or information that has arrived 

in the period t. 

 

  So this is what we call as mean equation where this shock information shock is modeled as  

mean 0 with the constant variation sigma square. So this error term is modeled mu t as a normal 

distribution with a mean of 0 and standard deviation of sigma this is the  distribution of error and 

then we have the conditional variance equation as sigma square  t which is a constant term alpha 



naught plus alpha 1 into mu square t minus 1 where these  innovation or error term square mu 

square t minus 1 are obtained from the mean model.   

𝜎𝑡
2 = 𝛼𝑜 + 𝛼1 ∗ 𝜇𝑡−1

2 + 𝛼2 ∗ 𝜇𝑡−2
2 + ⋯ + 𝛼𝑞 ∗ 𝜇𝑡−𝑞

2  

Please note the focus is not here on mean model which is a basic requirement basic mandatory  

requirement to obtain these mu t's here we model the return with some of its own lag  terms plus 

some exogenous variables that are predictor of returns and then extract the  residuals that is mu t 

which sort of reflect the current information arrival the information  shock that has arrived in the 

current period and now this mu t will be used to model the  volatility conditional variance through 

this formula.  This is a simple ARCH (1) estimate this is a simple ARCH(1) specification where 

estimate  of conditional variance or sigma square t is a function of previous period innovations  

that is mu square t minus 1. I repeat again this is a simple ARCH (1) specification where  estimate 

of volatility is a function of its immediate previous period innovation or information  shock or 

residuals that is mu square t minus 1 this is ARCH(1) specification. 

 

  In similar manner we can think of Arch (Q) specification as sigma square t which is dependent 

on previous  Q periods innovations or residuals or information shock in squared form. So many 

times when  residuals are not available we tend to use returns to proxy these as duals directly for  

example I could use to proxy mu square t minus 1 I could use R t minus 1 square or mu square  t 

minus 2 as R square t minus 2 this we have done in the previous numerical example if  you recall 

so this can be done that and the distribution of mu is like this it is mean  of 0 with a sigma square 

variance. Now here one thing important to be noted because the  sigma square t is also positive 

and these mu square t are all positive the coefficients  and like alpha naught alpha 1 alpha 2 they 

cannot be negative and therefore some constraint  has to be put so that all the alphas are greater 

than 0 for all i equal to 0, 1, 2  and up to Q. So all these alphas have to be greater than 0 which is 

a sort of sufficient  condition to model this.   

 

So the resulting Arch Q a more generic version of Arch model that is Arch Q model specification  

can be written as a combination of mean equation which is y equal to beta 1 plus beta 2 x 2  plus 

beta 3 x 3 and so on plus mu t where mu t is normally distributed with a mean of  0 and a variance 

of sigma square and then the conditional variance expression or the  conditional variance estimate 

of Arch model sigma square t for period t is written as  either H t you can also write as H t or 

sigma square t as alpha naught plus alpha 1 plus  mu square t minus 1 plus alpha 2 into mu square 



t minus 2 and so on till alpha Q into mu square  t minus Q where all these mu squares are the 

innovation or error terms for models for period  t minus 1, t minus 2 and up till t minus Q. 

𝑦 = 𝛽1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝜇𝑡 , 𝑤ℎ𝑒𝑟𝑒 𝜇𝑡~ 𝑁(0, 𝜎2) 

𝜎𝑡
2(𝑜𝑟 ℎ𝑡) = 𝛼0 + 𝛼1 ∗ 𝜇𝑡−1

2 + 𝛼2 ∗ 𝜇𝑡−2
2 … … . + 𝛼𝑞 ∗ 𝜇𝑡−𝑞

2  

 

 And please remember one external constraint  that all these alpha naught and alpha 1 and alpha 2 

have to be greater than equal to 0  that has to be put to ensure that in none of the estimates the 

estimate turns out to  be negative which will be the next previous estimation.   

 

 

However, this model has particularly two problems one is that what if the lag structure is very 

long then this model becomes as you can see very extremely un-parsimonious if lag structure  is 

long. Second, you would a simple way to solve that kind of issue and you can see that  here 

would be to somehow get the expression in the form of sigma square t minus 1 which  as we will 

see the Garch family of models is a very simple and intuitive extension to  this form of ARCH 

models. The idea here is that large Q s mean that models very less  parsimonious and there is a 

higher probability of getting negative coefficients or alpha  i s which leads us to think of a simpler 

ways and of expressing this model and as you  would have already thought that probably and the 

intuition comes from EWMA model that probably  we could replace some of these mu i s and 

express this sigma square t estimate in terms  of previous period estimates of sigma square t 

minus 1 because essentially the information  that is captured in sigma square t some of that is also 

capturing captured in sigma square  t minus 1 in a slightly more parsimonious manner. So, rather 

introducing all such long  like the structure we could rather in a parsimonious manner use 

somehow sigma square t minus 1  and that leads to the natural expansion of Arch series towards 

Garch family of models. 

 

  To summarize this video, we noted that the Arch series of models very nicely capture  the idea 

that the volatility estimates should have higher weight in the more recent terms  and as the time 

passes and a particular period becomes older and older its impact on the  volatilities estimate 

should decay. However, the Arch family of model has its own set of  problems such as it has 

slightly less parsimonious structure and we also have to externally put  constraints so that 



coefficients remain positive all the coefficients remain positive. To account  for these problems a 

natural offshoot is a Garch family of models which is essentially  derived from Arch family of 

models which we will discuss in the next set of videos.  In the previous discussions we noted that 

even though Arch set of family models are  extremely useful in modeling volatility though they 

still have their own set of problems.  For example, an extremely non-parsimonious structure of 

lags or lagged volatility levels  makes it vulnerable to negative coefficients or resulting in 

negative coefficients in estimation. 

 

  In this video we will introduce and in a series of next few videos we will introduce Garch  

family of models and how they improve upon the Arch modeling.   

 

 

In a sense the GARCH models or generalized what we call generalized Arch models they are 

essentially the generalized version of Arch model that allow the conditional volatility sigma 

square t to depend not only on the past information or innovation terms that  is mu t but also its 

own lags that is sigma square t minus 1 and previous lags. Let us see how. So, our estimate of 

volatility which is sigma square t or H t has three important components alpha naught, alpha 1 

into mu square t minus 1 plus beta 1 into mu square t minus 1 this is called simple Garch 1 

specification and as we will see shortly it is a very powerful  and useful specification.  

𝜎𝑡
2 = 𝛼0 + 𝛼1 ∗ 𝜇𝑡−1

2 + 𝛽1 ∗ 𝜎𝑡−1
2  

First and foremmeansthe term alpha naught this  term alpha naught makes this model capable to 

handle what we call as long term mean reversion  property that means because of this term this 

term helps model achieve some kind of long  term means so that when the value is higher the 

sigma square t estimate is higher than  the normal levels it tends to pull it towards some kind of 

long mean or whether it is lower  then also it pulls higher towards that long term mean. 

 

 So, this alpha naught drives that  property of long term mean reversion we will see the value of 

that long term mean shortly.  Now this mu square t minus 1 into alpha 1 creates that dependence 

on recent information.  So, this mu square t minus 1 captures the information or gives sort of 

alpha 1 way to the latest information that has arrived and all the previous levels of information 

are  captured through the sigma square t minus 1 with the idea that historical information  



structure will be captured through this sigma square t minus 1 and its coefficient beta  1. Now 

because of this extremely, extremely parsimonious structure the coefficients alpha 1 alpha naught 

and beta 1 only three coefficients  being present the chances of these coefficient turning to be 

negative is very less.   

 

 

Let us see when we make the statement that GARCH is a more parsimonious model as compared 

to ARCH and very less likely to reach non-negative constraints. 

 

 Let us see why we could make  this statement. If this is the model if the generalized is called 

GARCH 1 1 model so you have 1 lakh for mu square t minus 1 and 1 lakh for the previous 

conditional estimate  sigma square t minus 1. So, your volatility estimate is dependent on 

previous values of mu square t minus 1 and sigma square t minus 1.  So, it becomes this kind of 

model. Now you can simply substitute for sigma square t minus 1 in the same manner to get it in 

the form of mu square t minus 2 and sigma square t  minus 2. These values can be substituted 

further here resulting in this kind of model and as you would have now guessed it we can keep on 

substituting fitted variance terms like  this. 

𝜎𝑡
2 =  𝛼0 +  𝛼1 ∗  𝜇𝑡−1

2 + 𝛽1 ∗ (𝛼0 + 𝛼1 ∗ 𝜇𝑡−2
2 + 𝛽1 ∗ 𝜎𝑡−2

2 ) 

 

 So, this is our basically fitted terms when I use the word fitted variance this is nothing but sigma 

square t or its different variance.   



 

So, as we go on substituting these fitted variance terms, we can get this expression.   

𝜎𝑡
2 =  𝛼0(1 + 𝛽1 + 𝛽1

2 + ⋯ . . ) + 𝛼1 ∗ 𝜇𝑡−1
2 (1 + 𝛽1𝐿 + 𝛽1

2𝐿2 + ⋯ . ) + 𝛽1
∞𝛼0

2 

 We keep on iterating in terms of mu square t minus 1 and taking the sigma square back in time 

for example sigma square t minus 1 to sigma square t minus 2 and so on up till  infinitely long 

ahead in time and therefore this term and generally it is assumed that  all these coefficients are 

less than 1 so this term will approach to 0. So, essentially you would get a term which is a some 

kind of constant term and then another terms which  are function of lags of mu square t minus 1 

for example this would be mu square t minus  1 and this L represents lag for example this will be 

mu square t minus 2 this will be mu  square t minus 3 and so on. So, essentially you can think of 

this expression as a some kind of arch model like this this is some kind of arch model with a 

constant term and  lags of mu square t minus 1 but because we have taken or absorbed so many 

lags we can  think of it as infinite order arch model. 

𝜎𝑡
2 = 𝛾0 +  𝛾1𝜇𝑡−1

2 +  𝛾2𝜇𝑡−2
2 + ⋯ … … .. 

 

  So, this is like an infinite order arch model and thus essentially with only three parameters  that 

is alpha naught alpha 1 and beta 1 we could express an infinite order arch process  in a simple 

GARCH 1 process and this is the very reason that while this model can be extended  as GARCH 

PQ as well where you have P order of mu square t minus 1 that is mu square t  minus P and sigma 

square t minus Q but in general there is no theoretical underpinning  for this kind of model in 

economics and finance and a GARCH 1-1 kind of model is more than  capable enough to model 

most of the series in economics and finance and that is why because  of this extremely 

parsimonious nature the chances of these coefficients turning to be  negative is very less and it 

provides a considerable improvement over the arch family of models  because it captures infinite 

series of arch model with just simple GARCH 1-1 specification  generalized arch.  To summarize 

in this video we introduced the GARCH model as a simple combination of three  terms which is 

some kind of long term mean alpha naught a coefficient alpha 1 which is  assigned to innovation 

terms mu square t minus 1 and alpha 2 assigned to historical estimates  of sigma square t minus 1 

with such a simple and parsimonious structure it could capture  a model which is equivalent to an 

infinite arch process so an infinite arch process is  simply captured by this kind of GARCH 1 

model although we could generalize it but in economics  and finance this GARCH 1 model is 



reasonably capable and robust to handle any kind of time  or price series and therefore in this 

model the chances of coefficient turning to be negative  is also very less.   

 

In this video we will discuss the GARCH 1-1 model, which is a very powerful and useful model 

in more detail.  We will also discuss some of the issues with GARCH 1 model that leads to search 

or requirement of more advanced GARCH models.  Recall our expression for GARCH 1-1 model 

as sigma square t which is a combination of constant alpha naught plus alpha 1 into mu square t 

minus 1 plus beta 1 into sigma square  t minus 1. 

 
  Here the unconditional variance of the error term is given as alpha naught upon 1 minus  alpha 1 

minus beta 1.  One required condition is that the summation of alpha 1 plus beta 1 is less than 1.  

If this condition is not held then the process is non-stationary in variance probably many of us 

would have heard this term non-stationary mean or stationarity of a series this is what  we call as 

non-stationary or stationarity of variance.  So if alpha 1 plus beta 1 is less than 1 then the process 

stationary but if this condition is not held then it is non-stationary.  While there is no precedence 

or no rational for alpha 1 plus beta 1 greater than 1 which  essentially would mean that the 

volatility explodes, volatility sort of explodes. 

 

  This is called explosion of volatility infinitely in times to come but generally there is no  

precedence of that at best what you have is alpha 1 plus beta 1 equal to 1 which is often  termed 

as unit root or non-stationarity in variance or integrated I-GARCH.  So this relationship of alpha 

1 plus beta 1 equal to 1 (𝛼1 + 𝛽1 = 1)captures what we call as non-stationarity or unit root 

process in I-GARCH integrated actual variance.  So given that a GARCH process stationary this 

unconditional variance what is the application of this unconditional variance if the GARCH 

process stationary as you keep on forecasting  the future values of sigma square t let us say sigma 

square t plus 1 sigma square t plus  2 sort of unconditional forecast.  So you keep on forecasting 

as horizon increases from 1, 2, 3, 4, 5 and days after certain time the historical information that 

you had till time t equal to 1 the impact of that  information will die away and the volatility 

estimates will converge to this value.  So what we obtain here is a very useful property what we 

call as long term mean reversion long  term mean reversion what it means is that if the GARCH 

process stationary as the horizon  increases and you keep on forecasting for t equal to 1, t equal to 

2, t equal to 3 and  so on the impact of historical information that was available at t equal to 0 dies 

and  what you are left with is sort of unconditional forecast which converge to their long term  

value long term unconditional value which is provided here this is a very useful property  of 



GARCH 1 specification. 

 

   

Now this GARCH model as you would have noticed nonlinear in nature so it cannot be estimated 

with ordinary least squares scheme.  Once you have the idea of proper mean equation and 

variance equation as we have already discussed some variants of mean and variance equation so 

once you have some idea of these mean and  variance equations you need to estimate them with 

what you call as maximum likelihood method  the discussion the elaborate discussion of 

maximum likelihood estimation is out of the syllabus and not part of this discussion.  So we said 

that GARCH model effectively requires maximization of some kind of log likelihood  function 

basically this essentially it means obtaining some sort of parameters a family  of parameters for 

GARCH in this case the parameters are alpha naught alpha 1 and beta 1 as we  saw that maximize 

the probability of getting the observed or actual data so these parameters  observing those 

parameters that maximize the probability of getting the actual data  that we observe from 

financial markets so that would be the scheme of MLE or what we  call as maximum likelihood 

estimates these estimates of alpha naught alpha 1 and beta  1 would be employed.  Sometimes the 

model or the process of MLE does not exactly converge if the observations are too less than it 

may not converge and various other reasons it may not converge  as well it is a non-linear kind of 

iteration where you maximize some kind of probability  density of getting the observed data.   

 

So now to summarize this video we discussed that GARCH 1 1 process appears like this sigma  

square t equal to alpha naught plus alpha 1 into mu square t minus 1 plus beta 1 into  sigma t 

square t minus 1 which is a GARCH 1 1 model with 1 lag of innovation or error  term mu square t 



minus 1 and 1 lag of conditional variance which is sigma square t minus 1. 

𝜎𝑡
2(𝑜𝑟 ℎ𝑡) =  𝛼0 + 𝛼1 ∗ 𝜇𝑡−1

2 + 𝛽1 ∗ 𝜎𝑡−1
2  

  However, notice in this model even though very parsimonious it still has three coefficients  

which may turn out to be negative so we need some kind of artificial constraints to ensure  that 

these coefficients alpha naught alpha 1 and beta 1 do not turn out to be negative.  The second and 

also very important this model does not capture the asymmetric response of  volatility or what we 

call leverage effects of price movements.  Recall we earlier said that in financial markets what we 

observe is called leverage effect where rising prices result in sort of lower levels of volatility 

while falling prices  results in higher level of volatilities or price innovations or shocks to price 

that  are on the positive side have less impact on volatility while those that are negative  have a 

higher impact of volatility.  So this asymmetric nature or asymmetric behavior of volatility is not 

observed or modeled by this kind of model. 

 

  There is nothing that captures or models this asymmetry in volatility behavior.  So these are 

some of the shortcomings of this model and in the next video we will discuss  some of the more 

advanced models that tries to overcome these handicaps or shortcomings  of the GARCH model.  

 

 In this video we will conclude our discussion of GARCH family models by introducing two 

models that is GJR model and eGARCH model that tries to overcome the shortcomings one that 

is leverage effect, help us model leverage effect and second negativity constraints of  model 

coefficients.   

 

So we start the discussion with the leverage effect and it has been well observed that negative 

shocks induce more volatility than positive shocks as we discussed earlier and  we gave it a name 

leverage effect.  Now there are two very important models, one is called GJR GARCH model and 

eGARCH, Nelson  and Seagarch model that tries to overcome this.  Let us start with the GJR 

GARCH model which appears like this where estimate of volatility  sigma square t is a function 

of alpha naught, alpha 1 and beta 1 which are familiar terms  with us. 

 

  𝜎𝑡
2(𝑜𝑟 ℎ𝑡) =  𝛼0 + 𝛼1 ∗ 𝜇𝑡−1

2 + 𝛽1 ∗ 𝜎𝑡−1
2 + 𝛾 ∗ 𝜇𝑡−1

2 ∗ 𝐼𝑡−1We already saw them in GARCH 1 

1 but one more term is added which is gamma into mu square  t minus 1 into i t minus 1.  So we 



already understand these terms GARCH 1 1 parameters.  Let us discuss this particular last term.  

Here i t minus 1 is sort of indicator or dummy variable which takes a value of 1 if gamma  mu t 

minus 1 is less than 0 or it is equal to 0 otherwise.  So essentially we are running two models, so 

essentially we are running two models one  when the shock is positive, when the shock is positive 

then only this version GARCH 1  1 is run but when the shock is negative then we are running a 

slightly more elaborate model  to capture that asymmetric response. 

 

  The idea here is that with running this asymmetric or sort of different models for positive and  

negative shock that the negative shock, the negative original shock would be captured  by this 

gamma and as you would have guessed if the leverage effect are indeed significant,  if the 

leverage effect are indeed significant then this gamma which captures the leverage  effect should 

be significantly positive.  So for the leverage effects to exist this gamma should be greater than 0 

because this  i t minus 1 is 1 only for negative shocks.  For the positive shocks it is 0 so only this 

model is 1.  So, if there is some incremental positive or higher impact of negative shocks that 

would  be captured by the positive coefficient through this complete term, positive coefficient 

gamma  and this complete term.  So, again this model has parameters alpha naught, alpha 1, beta 

1 that were only from  GARCH 1 1 and then additional gamma. 

 

  Now for this model also the parameters that is alpha 1 naught, alpha 1, beta 1 and alpha  1 plus 

gamma have to be positive or greater than 0 to ensure that the estimate of volatility  sigma square 

t is positive.  So, that additional constraint has to be put although it accounts for the asymmetric 

nature  of volatility or leverage effect, but still non-negativity constraint has to be put externally.   

 

Another very important model of Nelson-Egache model captures both the properties that is  non-

negativity and as well as the leverage effect.   

ln(𝜎𝑡
2) = 𝜔 + 𝛽 ln(𝜎𝑡−1

2 ) + 
𝛾𝜇𝑡−1

√𝜎𝑡−1
2

+ 𝛼[
|𝜇𝑡−1|

√𝜎𝑡−1
2

− √
2

𝜋
] 

Look at the expression here you have estimate in the natural log form then the omega beta  into 

natural log of sigma square t minus 1 and then mu t minus 1 into gamma upon square  root sigma 

square t minus 1 plus alpha and magnitude of the error terms mu t minus 1  upon sigma square t 



minus 1 and so on.  In this model notice that estimate of volatility is modeled in the form of 

natural log and  therefore the non-negativity constraint is removed because whatever even though 

the parameters  can be negative the estimate of volatility may still be positive because of this log  

thing. 

 

  So, this model affords it can afford the negative parameters that is a very useful property  and 

volatility estimate will still turn out or rather conditional volatility estimate  will still turn out 

positive.  The second and very important property of this model is the asymmetric response of 

volatility  while the mod of mu t minus 1 captures the symmetric response or the both sides it 

considers  negative and positive sides as same, this mu t-1 captures the asymmetric nature. Now 

as per out knowledge of asymmetry effect negative shocks should have high impact on volatility 

and therefore we are estimating the gamma to be negative and significant , which would capture 

the volatility shock in this volatility model.  

To summarize this video, we studied two advanced GARCH models, GJR-GARCH and E-

GARCH. GJR which could account for asymmetry or leveraging effect  but it still has the 

problem of externally put non-negativity constraint that is non-negativity constraint in parameters 

or coefficients , i.e., alpha not, alpha one, beta one has to be externally put. Whereas nelson 

EGARCH model can overcome both these constraints that it could not only  model the leverage 

effect but also we need not to put any non-negativity constraint because of natural log to estimate 

even though coefficient can be negative, the estimate of volatility will still be positive.  

shocks induce more volatility than positive shocks as we discussed earlier and  we gave it a name 

leverage effect.  Now there are two very important models one is called GJR GARCH model and 

Nelson  EGARCH model that tries to overcome this.  Let us start with the GJR GARCH model 

which appears like this where estimate of volatility  sigma square t is a function of alpha naught, 

alpha 1 and beta 1 which are familiar terms  with us. 

 

  We already saw them in GARCH 1 1 but one more term is added which is gamma into mu 

square  t minus 1 into i t minus 1.  So we already understand these terms GARCH 1 1 parameters.  

Let us discuss this particular last term.  Here i t minus 1 is sort of indicator or dummy variable 

which takes a value of 1 if gamma  mu t minus 1 is less than 0 or it is equal to 0 otherwise.  So 

essentially we are running two models, so essentially we are running two models one  when the 

shock is positive, when the shock is positive then only this version GARCH 1  1 is run but when 

the shock is negative then we are running a slightly more elaborate model  to capture that 

asymmetric response.  The idea here is that with running this asymmetric or sort of different 

models for positive and  negative shock that the negative shock, the negative original shock 

would be captured  by this gamma and as you would have guessed if the leverage effect are 

indeed significant,  if the leverage effect are indeed significant then this gamma which captures 

the leverage  effect should be significantly positive. 

 

   


