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 In this lesson, we will discuss the Tail Risk Measures Namely Value At risk, VAR and expected 

shortfall or ES or Conditional Value At risk models. First, we discuss the theoretical underpinnings 

behind the VaR measure, then we provide the mathematical formulation behind the same. Then we 

conclude the discussion on VAR with a few important numerical examples. Next, we provide the 

shortcomings of VAR that offer the motivation to explore the CVaR or Conditional VAR measure.  

We introduce the CVaR measure and its useful properties.  Then we provide the mathematical 

formulation to CVaR measure. Subsequently, we concretize our understanding of the C-VAR 

measure with a few simple examples.  We close the discussion with a summary and concluding the 

marks.   

In the series of the next two videos, we will discuss a very important Tail Risk Measure that is 

Value at Risk Measure or VAR Measure.  The measure is often employed in risk management by 

financial institutions. 

 
 

  For example, employed by banks in portfolio performance and risk management, employed by 

financial market exchanges for their margin requirements.  Consider the distribution of T-period 

returns.  It appears to be a normal bell-shaped curve like this.  On the positive side, generally you 

have positive returns or what we call gains on the right side and on the left side you generally have 

losses or negative returns.  Now let's say we want to make a critical statement about our position 

that we are X percent certain  that we will not lose more than V dollars in time T. 

 

 So two important parameters of  this VAR measure is time T, the period over which we are 

examining our data and our confidence  or certainty level at X percent.  Let's say this X percent is 

our confidence level, then in that case, if this is a gain distribution that means on the right side, we 



have gains and on the left side we have losses which are generally negative returns, then we are 

looking at 100 minus X percentile value.  Which means if we want to be X percent certain, then we 

are looking at on this distribution 100 minus X percentile.  For example, let's say if the value is 95 

percentile, X takes the value of 95 percentile,  then what we are looking at is 100 minus 95 which 

is 5 percentile of the distribution  which should be somewhat here, 100 minus X and this would be 

generally a loss value,  negative return or negative value associated with this.  So we will say that 

this value V is the loss that we are X percent certain, in this case  95 percent certain that will not 

lose more than this amount, will not lose more than  this amount 95 percent times in time T. 

 

 T is the time period that is under consideration  which also means basically this is the area under 

the curve which is 95 percent.  So, 95 percent chance is there that will not lose more than this value 

and what is this V?  This is 100 minus X percentile on this distribution.   

 

So, we are essentially making a critical statement that we are X percent certain that will not lose 

more than V dollars in time T, a period of T. It can be daily, weekly or any time period under 

consideration.  So, the Variable V here which is the value that we will not lose is the T Day 100 

minus X percentile VaR of the portfolio. 

 

  I repeat V here is the VaR on Tth day 100 minus X percentile VaR of the portfolio that is 1 percent 

VaR of the portfolio.  This VAR Variable V which is the VaR of the portfolio it is a function of 

time, time period which is under consideration and confidence level X. Often this VAR is also 

expressed in terms of loss function which is opposite of gain sort of negative gain.  In the loss 

function your gains will be on this side on the left side and your losses will be on this side.  So if 

you are talking about loss function and we are associating a 90 let us say 95  percent confidence 

then we are looking at 95 percent percentile itself. 

 

  We are looking at this side right side of cut off which is 95 percent of the area sort  of this area 

cumulative area of 95 percent and then in that case VAR is expressed in  terms of losses or negative 

gain and we say that on the gain for negative gain or loss  function this is 95 percent VAR on the 

negative gain or loss function 95 percent VAR.  So, the cutoff point is 95 percent VAR, and we 

make again the same statement that we are 95 percent certain that we will not lose more than V 

dollars which is this cut off point V dollars in time T.   



 

Let us put some values here for example, when T equals to 5-day horizon when we are looking at 

possible losses over 5-day horizon and the confidence level of 97 percent.  So that means you want 

to be 97 percent confident then VaR measure value at risk measure  is the loss over next 5 days 

either on gains distribution it is the third percentile value  if you are looking at gains distribution 

then this is the third percentile value that means  if it is a gains distribution here you have gain and 

here you have losses then in that  case third percentile or if you are looking at loss distribution that 

means losses on  this side and gain on this side then you are looking at 97 percentile this side 97 

percentile  of distribution of losses.  So again to just repeat that if you are considering the loss 

distribution you have losses on this  side and you want to be let us say 97 percent confident then 

this cut off value is 97 percentile  that means the area under the curve area and this probability 

distribution this area is  97 cumulative area is 97 percentile or essentially this point is cut off point 

is 97. 

 

  In case you are looking at the gains distribution where gains are on this side positive returns  and 

losses on this side then you are looking for V on the left side on the left side of  distribution the 

losses are here at around 100 minus 97 which is 3 percentile.  So this cut off value would be 3 

percentile and both of the values will be same because  there is a symmetry in the distribution so 

both the values will be same and whatever  value you find V as VaR you would make a statement 

that you are 97 percent certain that over  a 5 day horizon your loss will be no more than V dollars.  

To summarize, in this video we discussed and introduced the VAR value at risk measure.  We noted 

that VAR on a given distribution of returns gains and losses it is sort of maximum loss that would 

occur over a given horizon or a given period let us say t days maybe 5 day or a week or month with 

a certain confidence level x that is maybe 95 percent or 97 percent.  The interpretation changes 

depending upon whether we are looking at the loss distribution  or gains distribution. 

 

  We said that on a loss distribution we look at the right side and if you want to be let  us say x 

percent certain then we look at the cutoff point as x percentile which gives  us the cumulative 

probability here on the left side and this x percentile becomes the  cut off to estimate the VaR V on 

the right side.  While when we are looking at the gains distribution where gain side is the right side 

and loss side is the left side then if you want to be experts in certain then we look at x 100 minus x 

percentile on the left side which is the loss side.  So for example if you are looking at 95 percent 

confidence then you look at the 5 percent cut off value on this side which is the V or rather it will 



be negative some kind of loss value which is your potential losses maximum potential losses over 

a given horizon t with the confidence of 95 percent.   

In this video we will continue our discussion of VAR and we will provide a more formal 

mathematical definition of the theoretical concept that we have discussed till now.   

 

Recall how we expressed VaR we said that if you are asked on any given day let us say  we are 

talking about daily periods and we say that what is the probability that you  can lose more than 10 

million. 

 

  So you may reply by saying in the following manner you may say that on any given day if  daily 

is my horizon I am looking at daily periods then with 95 percent confidence I  cannot lose more 

than 10 million on my portfolio or it can also be expressed in terms of rupee  or dollar value or also 

the return negative return amount which is essentially losses.  So, I can express my loss maximum 

loss for this 95 percent confidence as some value in rupee or dollar amount as 10 million or 

something or negative return of x percent.  This is also if you think of it this is also same way of 

saying that though there is also  a chance of 5 percent that my losses can exceed I repeat there is 

also a chance or there is  a way of saying that there is a 5 percent chance that my losses can be more 

than this  amount of 10 million or x percent and therefore we may express our VaR value in two 

ways.  We can say that when we are looking at gains distribution then we are looking at left tail  

for losses then we may say that 5 percent daily VaR is some loss amount like 10 million  or x 

percent negative return that is losses or if you are looking at loss distribution  then you may say 

that I am looking at right tail and then we can say that 95 percent daily  VaR is 10 million or the 

amount that I think that I would lose the maximum amount that  I would lose with 95 percent 

confidence.  



 

Think of a return distribution rather loss  distribution appearing like this for now we will ignore 

this CVAR and the extreme  tail we are talking about VaR only so we are looking at normal 

scenarios with some 95 or  99 percent confidence. 

 

 In that case on y axis we have frequencies or probability distributions  probability densities rather 

and on the x axis you would have losses on the right tail  and gains on the left side. We can express 

losses in rupee dollar amount or also in percentage  return terms but we generally tend to convert 

them into what we call as standard normal  distribution or z values or z distribution or z distribution 

which is z equal to x minus  mean upon standard deviation where x can be for example returns or 

rupee dollar gain losses  mu is mean and sigma standard deviation so you convert to make it more 

easy to interpret  you convert into z values or standardization this is called standardization and that 

is  why when you have z values or z values on x axis this is called standard normal or some  kind 

of standardized distribution. Now when we are talking in terms of standardized distribution  let's 

say you are looking at 95 percent VaR because we are talking about loss distribution  so we are 

saying 95 percent VaR that means essentially we are looking for a loss value  on this side or 

corresponding z value to a loss where the area the cumulative area  on the left side is 95 percent 

why 95 percent because we want to cover a 95 percent chance  that we are well covered we want 

to attach a 95 percent confidence so we are looking  at the cumulative probability on this side at 95 

percent. Now we are looking at a z value that gives us this confidence or this cumulative probability 

on the left side of 95 percent or rather alpha equal to 95. Once we have this z value we can convert 

it into the actual  rupee dollar loss rupee dollar loss or loss in the form of return percentage x 

percentage  but we are defining or providing the formal definition of VaR in this z terms. 

 

 So this  is nothing but the definition of percentile itself which is to say that this is the minimum  

value of z this is the minimum value of z for which the cumulative probability almost  exceeds this 

95 you can express it as greater than equal to or greater than which will almost  because of the 

continuous distribution it would not change much. So, this is an amount which is greater than equal 

to alpha which was 0.95 or 95 percent. So this is nothing  but the definition of percentiles only and 

we are looking for a cutoff point cut off  point z which gives us the cumulative value of 0.95 here 

on the left side of it which  on the loss function becomes our percentile. 

 

 If you are looking at the gain function we  would have looked for the 5 percentile but we are 



looking at loss function so we look  at 95 percentile and that becomes our VaR value of x. Later 

we will convert this z value  into corresponding x loss value in terms of rupee dollar or percentage 

terms but this  is the formal definition of our VAR measure that is the minimum value of z which 

has a  cumulative probability on the left side equal to that cut off which is nothing but the definition  

of percentile itself. To summarize this video, we provided a more formal mathematical definition 

of VaR based on previous discussions that we had previously we discussed in a more qualitative 

manner but now we have provided a more formal mathematical definition which is same as the 

definition of percentiles or quantiles. In this video we will conclude our discussion about theoretical 

underpinnings of value at risk or VaR models. We will also discuss how to compute VaR from 

empirical dataset. 

 

  

To conclude our VaR discussion, we said there are three important inputs to define VaR or value 

at risk for a position or portfolio.  First the time period the daily or weekly time period over which 

we are going to estimate the losses. Second the level of confidence which leads us to probability 

values may be 95% confidence or 99% confidence. Last and a very important measure which is the 

estimate of loss which can be in absolute rupee dollar terms or percentage return terms. Now the  

missing piece here is how to attach this confidence level to the estimate of loss and that requires  

us the distribution of returns or losses may be a standard normal distribution or we can  have 

empirical data. 

 

 In case if we have standard normal distribution of returns daily or whatever  horizon we are 

interested in that periodic return distribution we have we have already  seen the mathematical 

formal definition of VaR to estimate the loss using this standard  normal distribution. The percentile 

definition we have already seen applying which if we have the standard normal distribution for 

daily weekly or any kind of periodic returns, we can estimate this loss by modeling the returns 

through the distribution. But what if we have the empirical data then what to do.  

 

 



 

So let's discuss how to estimate VaR when  you have discrete empirical observations rather than 

although more desirable is to have some  kind of distributional properties like standard normal 

distribution but in the absence of  that how to estimate with the empirical discrete observations and 

for a case for explanatory  purposes I'll use a rather simple case that I have 1001 observations which 

includes starting  from observation number 0 to 1000. Here it is interesting that I am noting the first 

observation as 0 you could have also noted it as first but then the last observation is 1001, you'll 

see why I'm doing this. 

 

 Now let's say you are interested in daily horizon, so these are daily return observations. The first 

thing you can do is you can order them in a decreasing fashion so the maximum return is let's say 

one observation number 1000 and the lowest return is observation number 0 or 1 to 1001 that also 

you can pick. In that case the observation number which is 990 is sort of a very important point 

here. Let's  say I'm looking at 99% cut off or 99 percentile value then the observation number 990 

you  can think of the entire set as 1000 periods so the 99% period will end sort of will cut  off the 

entire segment into two parts so this 990th observation will essentially cut into  99% and 1% two 

segments starting from this maximum value this 990th value will be the  99 percentile. Now think 

of this data into segments and this 990th observation will divide  the upper right side into 1 

percentile segment and therefore it represents that cut off level  or that 99% confidence level that 

we are interested in that means if I choose this cut off value  than 99% of the intervals will fall on 

the left and 1% on the right this 1% is the extreme  sort of observations and therefore this cut off 

point becomes my 99% daily bar because  it distributes the two or segments the entire horizon into 

two segments of 99% versus 1%  so this becomes and obviously because we have started the 

maximum value here and minimum  value here so this is our loss side where negative returns or 

negative losses are there  so this cut off value will become the point at which we can be 99% 

confident that my maximum  loss will be this value. 

 

 Similarly you can think of 95% so then I can use the observation  number 950 as a 95% cut off 

because the observation because the 950th this 950 observation starting  from this 0 to 1000 will 

distribute this segment into 95% length here and 5% here so this becomes  my 95% cut off that 

means 95% of the observations on the left and these are the 5% extreme loss  of the sort of 

observations so I can say with 95% confidence that this will be my maximum  loss. It is customary 

to have this side there is nothing theoretically that stops this side also having positive returns or not 



exactly losses but lower returns but generally in a practical sense you will tend to have negative 

numbers of negative return numbers here. To summarize this video, we discussed and concluded 

our understanding and theoretical discussion of VaR. We noted that while it is desirable to apply 

some kind of distribution like standard  normal distribution to model the returns and obtain VaR 

measures but also often you have  discrete empirical observations and how to model our returns 

with these discrete empirical  observations and find certain VaR values like 99% VAR and 95% 

VaR that we saw in this video.  In the next two videos we will try to reinforce and concretize our 

understanding of VaR value at risk through two simple numerical examples. 

 

  

Let's start with this first example where a sort of hypothetical gamble is designed that from a loss 

of 50 million to a gain of 50 million all outcomes are likely over a period of year. So, this is a sort 

of example of a uniform distribution that means the outcomes are distributed on probability 

distribution table where on y axis we have probability densities, probability PDEs, probability 

densities on x axis we have possible outcomes. They start from a value of minus 50 and they end 

up with a final value of plus 50 million. You can think of mid value or mean value as zero, but the 

point here is that this height is same for all the outcome that means all the outcomes are equally 

likely. Also please recall that this is a version of gain distribution because here on the right side we 

have gains and left side we have losses. 

 

 The other way round would have been starting from 50 million gains here and losses here then this 

would have been the loss distribution. So now if you are looking at either 1% on the gain 

distribution which is on this side 1 percentile cut off or sort of 99 percentile here. To simplify things 

on either of these graphs you can think of 100, 1 million intervals of 100 pieces where for example 

this is minus 50 to 49 and 49 to 48 and so on starting here 49 to 50.  So, you can think of 100 such 

intervals of 1 million dollar each or INR 1 million rupees of each. You can construct such 100 

intervals. 

 

 Now if I am interested in 1% work then means  on the gains distribution either I am looking at this 

cut off which is at minus 49 million  or 49 million loss or if I am looking at loss distribution either 

I am looking at this 99  percentile point cut off which is nothing but again minus 49 million rupees 

loss. So, either I look at gain side or loss side if I want to have that 99% confidence then I am 

looking at 1% on the gain side which is this or 99% on the loss side which is this and both values 



are same as 49 million losses. Similarly, if we are looking at 95% confidence then let us start with 

the gain function. This is minus 50, this is plus 50 and we are looking at 95% confidence, which 

means on the gain distribution we are looking at 5% cut off which is 100 minus 95 which is this 

5% cut off. Now it is too easy to know that this will be 5 intervals of 1 million rupee each which 

will end up at what point 45 million. 

 

  So this would be the 45 million loss point or minus 45 million. Similarly, if I am looking at the 

loss function then essentially it would be 50 to minus 50 and in that case also, we are looking at on 

the right side 95% cut off point which would again be a loss of 45 million. So, because this was 

uniform distribution things were rather simple for us to understand and estimate the cutoff points 

at 95% and 99% confidence levels.  To summarize this video here with a simple example numerical 

example where the approach employed uniform distribution, we saw how to compute VaR for 99% 

and 95% confidence levels.  In this video we will discuss a more systematic approach to VaR 

estimation with the help of probability distributions. 

 

  

Before we start with our numerical example, please recall that when you are making an assumption 

about probability distributions you need to connect that distribution probability distribution with 

your return data. For example, take a case in point with normal distribution. Generally, when we 

are talking about normal distribution, normal probability density distribution we tend to use 

standard normal distribution which are defined by z values. So, on x axis you have z values, so you 

have to convert let us say you have a return data in percentage returns or continuously compounded 

returns then you have to convert this return data into z values or z distributions. How to do that? 

You subtract the return data  from its mean and divide it by standard deviation it is a pretty simple 

procedure that is R  return data minus its mean mu which is the average of return divided by 

standard deviation  sigma so this is how you get the z values. 

 

 Now instead of return values on x axis you  have z values and as we will see shortly it has lot of 

beneficial properties. Now let  us say you are interested in sort of 99% confidence interval and 

assuming that is regular gain  distribution where on positive side we have on the right hand side we 

have positive returns  sort of gains and on left side we have negative returns or losses then in that 

case if you  are looking at 99% confidence then essentially your 1% area will be this. This will be 

your 1% area where you are interested in. So, what you will do is use the benefit or sort of properties 



of normal distribution to find this cut off point. Cut off point in the sense that right hand side 

probability cumulative probability on the RHS is 99% and therefore this becomes your cut off value 

at 1%. 

 

 Similarly if you want to find the cut off value or sort of 95% confidence level the procedure 

remains identical. All you need to do is find a point to which right side cumulative probability is 

95% and therefore this left side tail area becomes 5% which is the cutoff point in z terms you will 

obtain.  Once you have the z value corresponding to this cut off point then you can convert the z 

value into return form and subsequently compute the losses in actual rupee or dollar terms. This 

was about gains distribution so now if you are thinking in terms of loss distribution you have to 

follow a similar procedure only that now on the right side you will look at 95% or 99% cut off 

depending upon your confidence level. So now let's start with our numerical example. 

 

  

The example is as follows. Abhishek purchased a share of Rs. 1000 where continuously 

compounded daily returns are distributed with a mean of 12.5% per annum. So, this 12.5% is per 

annum so we need to convert it back to daily level and a standard deviation also of 50% per annum. 

 

 So we will convert this back as well at daily level. The question is how much value at risk or VaR 

margin needs to be deposited if you want to have 99% confidence. Also, it is given that there are 

250 days of trading in a year and returns are serially correlated. This is very important assumption 

before modeling or employing any kind of distribution that returns are serially uncorrelated. 

Particularly when we are translating volatility across different periods from annual to daily and so 

on then this assumption is very important. 

 

 Now we are supposed to compute the VaR margin for 1 day and 3-day period and it is given that 

z value corresponding to 1% significant level is minus 2.326. The application of this z value goes 

like this. So if we recall our previous discussion this  1% point is corresponding to minus 2.326 

here z value and the right side probability would  be 99. 

 

 Similarly if we were looking at the loss distribution then on this side z value  corresponding to 

99% is positive 2.326 you can employ them either way either looking  at left side or right side. The 



value is symmetrical only that here it is negative and on ARCH it is positive. So let us start with 

our numerical. First, we will compute the returns on daily because our horizon is on a daily basis. 

 
 

 If you recall the period was one important input what period, we are looking at that was one 

important input in our analysis. So, 12.5% is given at the annual level. So, let's compute it at daily 

level and it turns out to be 0.05% which is we got after dividing by 250. Why did we divide by 250 

because there were 250 dividing days in the year, so we divided 12.5% by 250 to get 0.05%. The 

computation of standard deviation from annual to daily is not as simple. The formula for any 

periodicity is sigma t  is equal to under root t into sigma for one period. 

𝜎𝑡 = √𝑇 ∗ 𝜎1 

 So here the period is total 250 days  so I need to divide it in order to compute it for daily I need to 

divide it by 250 that  is sigma t upon square root t equal to sigma 1 this is what we needed to do. 

So, we have 50% total volatility annual basis, so we divided by total trading days sigma root 250 

to get this 3.16%. Now the last missing piece is that Z value which is given to us minus 2.326 so 

that means we are looking at the sort of gain distribution, so we are looking at the left side of it and 

Z value is -2.326. All we need to do is connect this Z value and find a corresponding return value 

on the normal distribution. Already this Z value gives us that 1% sort of VaR number or maximum 

loss with 99% confidence. So how do we compute it the formula is simple mu mean mu D plus Z 

into sigma D mean?  

𝜇𝑑 + 𝑧 ∗ 𝜎𝑑  is 0.05% Z value being negative at minus 2.326 into sigma which is 3.16% which we 

got here so our return value is minus 7.3%.  Now let's say if your portfolio value your investment 

in this portfolio was 1000 rupees then in that case the losses that you can expect on any given day 

the maximum loss with 99% confidence is 73. I will repeat this a very important statement that I 

am making  from vast perspective that one day VaR one day VaR with 99% confidence or 1% 

significance  here was 7.3% in return terms or in value terms loss of 73 rupees with 99% confidence  

this is my maximum possible potential loss over a daily horizon with 99% confidence. 

 

  Let's see how to work this number for 3 days. So first we will convert our return to 3-day period 

by multiplying the daily return with 3 so we get this number and second we also need to multiply 



the daily volatility sigma one day which is 3.16% with square root 3 so this is nothing but under 

root D multiplication to one period standard deviation. So now that  we have our return and standard 

deviation values it's very easy to compute the potential  maximum 3 day loss with 99% confidence 

it's exactly identical procedure we have mean return  plus Z into sigma 3D mean we have already 

computed as 0.05% into 3 minus 2.326 into  square root 3 into 3.16% which works out to slightly 

higher than minus 7.3 at 12.55%  which is to suggest that if my portfolio is of 1000 rupees then the 

maximum 3 day loss  the maximum potential 3 day loss with 99% confidence would be 125 rupees 

50 paise that  means 125.5 in loss terms. So to put it in simple terms what we are saying that your  

loss value for a 3 day period with 99% confidence is minus 12.55% in negative return terms or  loss 

value or let's say if you are holding 1000 rupees worth of portfolio then your loss  with over a 3 

day period maximum loss over a 3 day period with 99% confidence is 125.5  rupees. To summarize 

in this video, we saw how to apply a normal distribution to compute value at risk measure in a more 

systematic manner. In this video we will conclude our discussion about value at risk models with 

their shortcomings and therefore the motivation to study expected shortfall or what we call 

conditional value at risk or CVAR models.   

 

Let us consider the profile of two portfolio managers or fund managers A and B while up  till a 

certain point this point the value remains same however portfolio B differs in  the sense that it has 

taken certain position in certain securities where in the extreme  tail, extreme tail maybe 5% or 

extreme tail of 1% the loss probabilities are extremely  high. 

 

 So we can see extremely large possibilities but these are hidden these probabilities are  in tail 

manner so to a portfolio manager who is specifically focused on the value at risk  that is the 95% 

scenarios may not be able to look at these loss measures because he  is solely focused on this region 

which is identical for both the positions but the main  difference lies here in this loss which is an 

extreme loss which is not for portfolio  A but for portfolio B. The question you may ask why 

portfolio manager of portfolio B manager  would be interested in such a position maybe because in 

this position on the positive side  also he may have some kind of upside he may witness some kind 



of upside on the positive  side and if the positive side were to appear his bonus would be very high 

but his sort  of negative side his performance is judged based on this bar number and his 

performance  is not evaluated based on this loss that may happen if extreme scenarios were to take 

place  because this is hidden as per our model so if he is judged or evaluated on bar model  he will 

be penalized only for this value V not for this extreme risk that he has taken  because this risk 

appears in the extreme tail and not captured by the bar so to somebody  who is looking only at a 

VaR as a measure both the positions portfolio A and portfolio  B will appear as of similar risk on 

the VaR. Like I said his motivation would be probably  there is some on the positive side some 

excess gains that he is expecting because of this  extreme risk taking and this motivates us to look 

at something called conditional VaR  or expected shortfall models that precisely look at what were 

to happen if indeed some  extreme events were to take place. So, if this extreme events were to take 

place then what would be his losses, that is what we examine in conditional value at risk or CVaR 

models or what we call it expected shortfall models that are the topic of next set of videos.  To 

summarize this video we discuss the shortcoming of value at risk models that is they are not  able 

to identify if there is some kind of extreme risk position on negative tail and  this motivates us to 

study what we call as expected shortfall or conditional value at  risk models. 

 

 Starting from this video and in next few videos we will introduce and discuss  a very important 

measure of tail risk that is conditional VaR or expected shortfall.   

 

Previously in the VaR or value at risk measure we said how bad things can get but now here we are 

saying if things do get bad what is our average expectation or our expected losses.  So, the VaR 

method covers all the possibilities with a certain confidence level. If that confidence level were to 

be held then what is my estimate of maximum loss. However, there are chances that this position 

is exposed to those losses that they are beyond confidence level. So if you recall the area that we 

ignored in the VaR is the tail region. 

 

 So whatever we said we stopped at this cut off point which we called as VaR but here we also look 

at that tail region. So we are more interested in the tail region, that is if these extreme scenarios 

were to materialize what would be our losses. And to cover this kind of exposure the extreme tail 

losses a more advanced version of risk measure that is CVaR or conditional VaR or expected 

shortfall is proposed. This measure computes expected losses given that or conditional upon the 

fact that confidence level is breached in mathematical terms that means your losses exceed your 



VaR level. So VaR level tries to compute certain level of maximum losses  this VaR level if this 

VaR level were to breach then what were to happen if this VaR level  was breached then what were 

to happen that is the scenarios beyond a certain confidence  like 99 or 95 percent have been 

breached. 

 

 So in simple terms essentially with CVaR  or ES what we are saying that earlier we had a VaR 

measure which was this which gave us  idea of how bad things can get but if things do materialize 

the bad things do materialize  that means this VaR level is breached and conditional to the fact that 

our losses are  more than this VaR that means we are in this region then what is my expectation of 

losses  how much losses I can expect.  

 

 

Let's put some numbers here so for conditional VaR CVaR or expected shortfall also we need to 

compute the VaR measure again and then only we can proceed with the CVaR. So, let's say we 

have for my X value of 99 percent confidence for over 10 days period T equal to 10 VaR is given 

as 10 million that means with 99 percent confidence we can say that over a 10 day horizon our 

maximum loss would be 10 million. So, this is the maximum loss with this much confidence in this 

period. Now what C VaR or expected  shortfall says is that if my VaR is more than 10 million 

assuming that this 10 million is  breached that means my losses are more than 10 million that means 

we are beyond this 99  percent level so if there was this 99 percent cut off which was my VaR at 

10 million given  that this 10 million level is breached and now we are talking in this level what is 

my  expected level of loss for a 10 day period given that this loss is greater than 10 million  or this 

10 million VaR level is breached. 

 

 So in simple terms what we are saying that  we have already assumed that this this level is breached 

we are already beyond this redemption  level of this much and we are already dealing with this 

level and in that case what is my  expected losses. Now the intuition that I want us to understand is 

that in this particular  case if this is your risk measure recall our one of the two portfolios portfolio 

A and  portfolio B where we said that with VaR level there is a motivation to set up this kind  of 

portfolio where there is an extreme possibility in the tail this extreme tail possibility  of loss with 

this kind of C VaR or expected shortfall measure the tendency of fund managers  to set up this kind 

of position where there is a in the tail there is extreme negative  loss possibility that will be 

mitigated. So the motivation for portfolio manager B to set up this extreme position where there is 



an extreme loss possibility in the tail which probably may not be identified by the VaR measure 

but identified by the CVaR measure.  So if the management or holders of this fund are also looking 

at CVaR measure they would easily identify this kind of position and therefore the motivation and 

probably the fund manager will be penalized and therefore the motivation to set up this kind of 

position is less. To summarize in this video we introduced our CVaR or conditional VaR method 

or what  we are calling as expected shortfall we saw how it improves upon the conventional VaR  

method and how it demotivates the fund managers it demotivates the fund managers from taking  

positions that may entail a very sizable risk in extreme tails which probably would  not have been 

identified by the simple VaR models. 

 

  In the previous videos we have discussed the theoretical underpinnings and provided the  basic 

understanding of CVaR or ES measure. Now in this video we will concretize and reinforce those 

understandings with mathematical formulation and providing the mathematical underpinnings or a 

way to measure this conditional VaR or ES measure.  

 

 

So often there are two ways like VaR there are two ways employed to compute ES either you can 

use the empirical data if empirical data is sufficiently rich data is available but if not then when you 

can use  some distributional assumption and integrate over the tail region. What it means is that  by 

basic definition the basic definition of CVaR is nothing but the fact that if this  X is my loss let's 

say I'm looking at the loss Variable X given that this loss Variable  X is greater than the VaR level 

so already we are assuming that VaR level is breached  so conditional to the fact that this loss is 

greater than VaR of X then what is the  expected value of that loss X. For a continuous normal 

distribution kind of probability distribution  let's say we are looking at the loss distribution that 

means this side we have losses and this  side we have gains. 

 

 So let's say this is my VaR level at one minus alpha probably we are  looking at 95 percent 

confidence level which means this is my 95 percent level one minus  alpha and this is my VaR so 

I would like to integrate I would like to integrate the loss  into probability density let's call it DF so 

I would like to integrate this value from  this one minus alpha this is the cumulative probability one 

minus alpha for this cut off  point up till one so one is the final last point so one minus alpha to one 

I would like  to integrate this X DF where we know that this F is a probability density function in  



this case it is a normal distribution so we sort of integrating over normal distribution  from one 

minus alpha to one. Now if you recall the cutoff point the value of X corresponding  to this one 

minus alpha is nothing but the VaR value and on the right side it goes till  infinity so theoretically 

it can be in finite level so integrating this X DF from one minus  alpha to one is almost same as 

integrating X with values from VaR so one minus alpha  has a corresponding value of X as VaR 

and one as a corresponding value of infinity so  the same can be transferred in terms of X as 

integrating VaR to infinity which have  the same interpretation.  

 

So essentially what we mean here is that if we are looking at  this loss function this is our cut off 

VaR point which corresponds to a cumulative probability  of one minus alpha maybe 95 percent or 

99 percent and starting from this point one minus  alpha till one so the point the maximum loss 

point which theoretically is an infinite value  has a cumulative probability on the left side as equal 

to one so sort of integrating  from one minus alpha to one which is integrating from VaR value to 

infinite value and therefore  the original formula where we said that given that X is greater than 

VaR at certain level  of significance maybe five percent or one percent if it is five percent then one 

minus  alpha is 95 percent if it is one percent then one minus alpha is 99 percent depending upon  

this number given that X is greater than this VaR what is the expected value of X which  is to 

suggest that integrate X starting from VaR so we integrate at lower limit VaR up  till infinite the 

maximum possible theoretically infinite but in real life you may have based  on your empirical data 

you may have some expectations of the maximum possible loss integrated Df  X where F is the 

probability density function so generally we assume normal distribution  to describe returns so this 

Df would be the probability density function for a normal  distribution.  To summarize this video, 

here we provided the mathematical intuition and also the formulation of equations to describe the 

C-VaR or expected shortfall measure. In the previous video we saw how to approach the problem 

of C-VaR or ES estimation when probability density distributions are given sort of continuous 

probability density distributions are given. 

 



 In this video we will see how to compute conditional VaR or expected shortfall using empirical 

data.   

 

 

Recall our computation of VaR with the empirical approach we said that if 1000 observation  1001 

observations are given we can segregate them let us say we are looking at 99 percent  VaR then we 

can find the 990th position we will order the data starting from maximum  to minimum and we will 

find the 990th observation the idea was that this 990th observation which  sort of segregates the 

entire observations into two length segments one is having 99  percent observations there is 1 

percent observation similarly for 95 percent we will find the  value at 950th and this 950th will 

segregate 95 percent and 5 percent length segments.  Now with the C-VaR or ES the idea is that 

this value this corresponding value of loss  is already breached that means we are already on the 

right side of it on the negative loss  side and therefore the way to approach this problem is to find 

all the value let us say  we are looking at 99 percent expected shortfall or C-VaR then the idea is 

that to pick up  all the values that are higher than this 990th position on the right side of it all the 

values  that are on the right side and take the average of them that average would be the expected  

shortfall or expected value of loss given that 99 percent VaR is breached. Similarly  think of 95 

percent VaR so this is the 95 percent cut off then you look at all the values  on the right side of it 

because we have ranked them from max to minimum all the values on  the right side of this 950th 

would be part of those 5 percent sort of extreme loss observations  that is scenario where maximum 

loss is materialized and therefore once you put this cut off of  950 observation as the VaR value as 

a cut off minimum cut off and take all the values  that are a higher loss in terms of magnitude they 

are higher that means indicating loss  on this side you take the average of all those x1 plus x2 plus 

and so on and take their average  if there are no observations this will be your expected shortfall or 

average loss given  that extreme scenario of 5 or 1 percent were to materialize.   



 

Now let us generalize this understanding suppose in a given data you have been given  probability 

mass function that means let us say there are n observations in the tail in  the empirical data and 

tail observations are already given to you and for those n tail  observations the observation loss 

observations are x1, x2, x3, x4 up to xn these are the  losses possible scenarios losses in possible 

scenarios in the tail region negative losses  and the corresponding probabilities as p1, p2, p3 and 

up till p1. 

 

 So in that case when  the probabilities are also given as a probability mass function rather so the 

probabilities  are given and the values are also given then your conditional VaR or s measure is 

simply  nothing but the expected value like this Pi into Xi summation i equal to 1 ton which  is 

nothing but this one which is q1, x1, q2, x2, q3, x3 and so on.  Now here this q1 is different from 

p1 how? Please note once you decide once you once you have decided that your VaR level has 

breached once you have decided that your VaR level has breached then only these are the possible 

scenarios. So for example in the actual universe  of population let us say this p1 was 5 percent in 

the original scenario but now in the revised  scenario conditional we are looking at conditional 

probabilities conditional that these are the  only possible events so there may be some other events 

which are on the left tail which  are on this side as well but that area is now negated so we are only 

looking at these  possibilities so what it means is that now we have to look at the conditional 

probability  q1 that conditional probability is p1 upon summation of p1 to n. 𝑞𝑖 =
𝑝𝑖

∑ 𝑝𝑖
𝑛
𝑖=1

 

Why we are doing this because we already know that this region is breached so these possibilities 

are ignored and only these are the remaining possibilities therefore their summation has to be 1. 

But  in original scheme of things this was not 1 probably this is 5 percent or 10 percent  or 1 percent 

depending upon our criteria for VaR and therefore if this is the case then  in order to standardize or 

sort of obtain the conditional probability qi we compute  qi as pi upon summation i equal to 1 ton 

pi. 

 

 Now how it is done we will see with the  help of a numerical example in the next set of videos. To 

summarize in this video, we saw how to compute CVaR or expected shortfall from a given set of 

discrete probabilities or probability mass function if empirical data is employed. In the next two 

videos we will try to concretize our understanding of CVaR and Es with the help of two simple 

numerical examples.  



 

 

Let us go through this example here it is given that 97.5 percent VaR is 1 million 98 percent VaR 

is 1 million and then a 2 percent chance that loss will be 10 million and we are supposed to compute 

CVaR or expected shortfall at 97.5 percent confidence. To simplify this  problem because these 

observations are discrete we will assume some kind of uniform distribution  in the tail that means 

at 97.5 percent VaR it is given to us that this is 1 million level  we will assume it to continue till 98 

and beyond 98 it is given that there is a 2 percent  probability that loss can be 10 million. So there 

are two particular discrete regions  available to us A and B and it is given while computing CVaR 

we assume that this 97.5 percent  is breached and the only two possibilities are A and B. 

 

 So the corresponding matching  probability of 0.5 percent here and 2 percent here needs to be 

standardized to 1 that means  now probability of A plus probability of B has to be 1 conditional 

because we are dealing  with a conditional event conditional to that VaR is breached and therefore 

we are in this  region only. How to achieve this? So the idea here is to make this summation as 1 

and  therefore we need to standardize these probabilities on a scale of PA plus PB because now this  

new P(A) plus P(B) supposed to be 1 will standardize the probability of 0.5 by dividing it with  

P(A) plus P(B) which is 2.5 originally and will standardize the other probability which is  2 percent 

also by standardizing it with 2.5. So there now the summation P of A plus P of b this becomes 1. 

So, in that case our new expected loss would be P(A) which is 0.5 upon 2.5 into 1 million plus 2 

upon 2.5 into 10 million which is our expected loss which is equal to 8.2. What is this 8.2 million? 

This 8.2 is our expected loss given that our VaR of 97.5 percent is breached that means given that 

this level was to breach at 1 million what is the possible scenario, and that value is 8.2 million is 

our expectation of loss.  In this video we will conclude our understanding of conditional VaR or 

expected shortfall with the help of simple numerical example. 



 

 

 Let's see how this numerical example works out.  So we have been given that a portfolio position 

has a 95 percent VaR at a 1 million level  rupees 1 million then there is a 3 percent probability that 

a loss of 2 million may happen  another 1 percent probability that a loss of 5 million may happen 

0.75 percent probability  that a loss of 10 million and a 2.0.25 percent probability that a loss of 2 

million may occur.  Now we are supposed to compute 95 percent ES expected shortfall or C VaR 

which means  it is given to us that what were to happen what is the expected shortfall or expected  

loss if this 95 percent VaR of 1 million is breached. 

 

 Essentially what they are saying  is let me help you visualize this what they are saying that given 

this 97.5 percent VaR  is breached this level is breached what were to happen next. Now it is given 

that let me plot a level of 2 million here with a probability of 3 percent. So, this is 95 percent sorry.  

So this is 3 percent that means 95 to 98 there is a 2 million loss we are assuming a uniform  kind 

of distribution because these are discrete observations. 

 

 Next from 98 to 99 there is  let me plot a slightly less thick bar 98 to 99 1 percent probability this 

is 1 percent  previously it was 3 percent so now it is 1 percent and the height of this is 5 million  it 

is given to us as 5 million. Next another 0.75 percent and I will draw rather thin bar to indicate that 

this is 0.75 percent in this region first is A this is B this is C and height is 10 million. 

 

 Another very thin bar with a very remote possibility of 0.25 the region D which has an area of 0.25 

20 million. So, these are the four regions. The interesting  thing here is that in the previous case if 

I sum up all the probabilities corresponding  to event A which is this A this is B this is C 0.75 and 

this is D if I sum this up P(A)  to P(B) plus P(C) plus P(D) it would add up to 5 percent but now 

the world has changed it  is given to us that this 95 percent level has breached and these 5 percent 

are the only  four possibilities with us that means conditional to the fact that this 95 percent level 

VaR  has breached these probabilities are the only probabilities and therefore they should sum  up 

to 1 that means probability of A given that VaR has breached plus probability of  B given that VaR 

has breached plus probability of C given VaR has breached plus probability  of D given that VaR 

has breached should be equal to 1 which means we need to standardize  these probabilities 

conditional to this fact that this VaR has breached. 

 

 How to do this?  Let us see that. So in order to standardize these probabilities all I need to do is I  



need to divide them by their summation that means summation is 5 percent so let us say  3 percent 

I divide it by 5 percent so I get probability of A conditional to VaR breached  similarly I divide 1 

by 5 0.25 by 5 and so on to get all the conditional probability  given that VaR has breached now 

that I have revised probability that is PA dash PB dash  that are conditional to the fact that the VaR 

has breached I can compute the expected  shortfall with the same method of expectation that is 3 

by 5 into 2 plus 1 this is PA into  RA plus PB into RB plus P rather PA dash PB dash PC dash into 

RC plus PD dash into RD  which is nothing but an expression like PI dash dash I am putting for 

the fact that conditional  to this fact that VaR has breached into RI where I equal to 1 to 4 there are 

four possible  events and we get expected value of 4.7 million let us see how to interpret this 4.7 

million  to conclude and summarize this video this 4.7 million is my expected or sort of average  

loss what kind of average probability weighted average loss given that VaR is breached and  these 

are the only four possibilities the extreme tail these extreme tails are the only  four possibilities 

available to me and this VaR has been breached given that this VaR  has been breached these are 

the only four possibilities and their expected value given  these probabilities 3% 1% and so on this 

is that expected value of 4.7 million.  

Conventional  risk models such as ARCH, GARCH do not provide sufficient emphasis on the 

negative tail of  the written distribution this inefficiency with the conventional risk models is 

overcome  with tail risk measures such as value at risk VaR and conditional value at risk C VaR 

measures  to begin with value at risk models these models estimate the maximum loss value 

expected over  a given horizon t with a certain confidence x percent while this method tells you 

how  bad things can get but in case things do get bad what may happen to our investment portfolio  

is not known fund managers may set up positions with a lower maximum loss value with a certain  

confidence level however these positions may carry extreme tail losses outside the confidence  band 

such inefficiency in the portfolio position design will not be identified by the VaR models  to 

account for this inefficiency of the VaR model we go to conditional VaR or expected short form  

models these models examine those losses that exceed VaR or to put it another way what is the  

expected loss given the losses exceed VaR . 


