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Simultaneous Equation Model-Part III 
 

So, welcome to our discussion on simultaneous equation model once again. Yesterday we 

discussed about what exactly is a simultaneous education model and why do we need to 

understand simultaneous equation model particularly to solve the endogeneity bias due to 

simultaneous nature of the two variables. So, that is basically simultaneity bias. So, this is the 

second reason of endogeneity. So, we call it simultaneity bias. 

 

So, that means in an equation if one of the explanatory variables is jointly determined with the 

dependent variable, then we will say that that the model is suffering from simultaneity bias and 

OLS cannot be applied because OLS will give biased and inefficient estimates. Now, today 

what we will do, we will take a simple example to understand mathematically the nature of that 

simultaneity bias. 

(Refer Slide Time: 01:22) 

 

So, we will take a simple example. What we are going to discuss is simultaneity bias of OLS 

and our model is 𝑦1 = 𝛼1𝑦2 + 𝛽1𝑧1 + 𝑢1 and 𝑦2 = 𝛼2𝑦1 + 𝛽2𝑧2 + 𝑢2. So, this is basically a 

simultaneous equation model, because the explanatory variable y2 is jointly determined with 

the dependent variable y1. 

 



So, these two equations are actually constituting a simultaneous equation model and they 

satisfy the two conditions to be qualified as SEM. Number 1: y1 and y2 are jointly determined 

and both the equations have their own standalone or independent meaning. So, you can think 

of the first equation as the labour supply function, second equation as the labour demand 

function. So, that is the reason both the equations are stand alone or they have independent 

meaning. 

 

Since, these two conditions are satisfied we call this is a simultaneous equation model. Now 

you will try to mathematically derive certain conditions. So, as to prove that first of all how y2 

is actually correlated with y1 and then we will say that in that condition how OLS is actually 

not applicable and then we will discuss what is a remedial measure meaning what type of 

estimation procedure we need to follow in this particular context of simultaneous equation 

model. 

 

So, from these you can write by substituting the value of y1 from equation 1,  𝑦2 =

 𝛼2(𝛼1𝑦2 + 𝛽1𝑧1 + 𝑢1) + 𝛽2𝑧2 + 𝑢2. So, this is the case. So, that means I can write 

(1 − 𝛼1𝛼2)𝑦2 = 𝛼2𝛽1𝑧1 + 𝛼2𝑢1 + 𝛽2𝑧2 + 𝑢2. Now, if dividing both sides of this equation by 

(1 − 𝛼1𝛼2), you will get, 𝑦2 = (
𝛼2𝛽1

1−𝛼1𝛼2
) 𝑧1 + (

𝛼2

1−𝛼1𝛼2
) 𝑢1 + (

𝛽2

1−𝛼1𝛼2
) 𝑧2 +

𝑢2

1−𝛼1𝛼2
. 

So, since u1 and u2 both have in the denominator 1 − 𝛼1𝛼2, this again can be simplified as 

 𝑦2 = (
𝛼2𝛽1

1−𝛼1𝛼2
) 𝑧1 + (

𝛽2

1−𝛼1𝛼2
) 𝑧2 +

𝛼2𝑢1+𝑢2

1−𝛼1𝛼2
. 

This I can write : 𝑦2 = 𝜋21𝑧1 + 𝜋22𝑧2 + 𝑉 

𝜋21 =
𝛼2𝛽1

1 − 𝛼1𝛼2
 

𝜋22 =
𝛽2

1 − 𝛼1𝛼2
 

                                                              𝑉 =
𝛼2𝑢1+𝑢2

1−𝛼1𝛼2
. 

 

So, that means for y2  to have a solution, the term 𝛼1𝛼2 should be not equal to 1. Because, here 

if you look, if 𝛼1𝛼2=1 then that becomes 0. Now, we need to think whether, this 𝛼1𝛼2not being 

equal to 1 is a very very restrictive assumption. Actually it is not. Because if you go back to 

this original two equations of our simultaneous equation model and if you think that one is the 

supply function and another one is the demand function. 

 



Then actually, if you go back and think about your labour supply function, then that is basically 

the y2 is the wage rate. So, this is greater than 0 and alpha 2 is actually less than 0. So, that 

means 𝛼1𝑎𝑛𝑑 𝛼2 is not equal. One is negative and another one is positive. So, that means it is 

not a very restrictive assumption as far as we consider one of the two equations in the SEM is 

actually a demand function and another one is the supply function. 

 

Now, let us assume that this is our equation 1 and let us say that this is our equation 2. Now, 

we said that in equation 1 OLS is not applicable because of correlation or covariance between 

y2 and u1 is actually not equal to 0. But, what is the proof? We assume that this is an endogenous 

variable, because of this reverse causality or y2 and y1 they are actually simultaneously 

determined. 

 

But, we have not yet given any proof and that was the idea we are deriving this mathematical 

model just to show you how this y2 is actually correlated with u1. From equation 2, we can 

understand that v is actually a linear function of u 1 and u 2, because 𝑉 =
𝛼2𝑢1+𝑢2

1−𝛼1𝛼2
 

 

So, v is the linear function of u1 and u2. And both u1 and u2 are uncorrelated with z1 and z2. So, 

v is a linear function of u1 and u2 and then u1 and u2 are uncorrelated with z1 and z2. That means, 

we can say that covariance between z1 and V is actually 0 and also covariance between z2 and 

V is also equals to 0. 

 

So, that means in equation 2, the error term is uncorrelated with both z1 and z2 and that is the 

reason we can say that OLS is applicable in equation 2 but not in equation 1. So, that implies 

we can apply OLS in 2. So, in equation 1 we could not apply OLS because y2 was 

simultaneously determined with y1 and that is the reason we say that it is correlated with u1. 

 

We have not yet given any proof. We said only this much that y2 and y1 are simultaneously 

determined and that is the reason that will produce some kind of simultaneity bias, because y2 

will eventually get correlated with u1, because simultaneity is the second reason of endogeneity. 

So, OLS is not applicable in equation 1. That is the reason we tried to derive an equation for y2 

the endogenous variable in the form of equation 2. 

 



And then we proved that OLS is applicable to equation 2 because the error term in equation 2 

is neither correlated with z1 nor z2. Now, if you think we are doing something new here in 

equation 2, it is actually not. We have actually experienced this type of equation in our first 

module itself where we were discussing about structural equation and reduced from equation.  

 

If you think for a minute you will easily understand why this equation 2 is actually reduced 

from equation for y2, because here y2 is expressed only in terms of the 2 exogenous variables 

z1 and z2. So, this equation 2 is actually a reduced form equation for y2. So, this is not new. So, 

in reduced form equation obviously our idea is that we can apply OLS here. 

 

Then, we will take y2 here and then we will plug in equation 1 and then we will estimate. So, 

that means the same two stages is two OLS procedure what we learned in first module. The 

same thing we are going to apply here. Now, what we have not proved so far is how y2 is 

actually correlated with u1. From this equation we can see that y2 is a function of v. Now, y2 

will be correlated with u1 if v is correlated with u1, because v is the error term in this y2 equation. 

 

So, there is only one channel by which y2 can be correlated with u1 and that is through V. We 

have proved that V is actually a linear function of u1 and u2 where 𝑉 =
𝛼2𝑢1+𝑢2

1−𝛼1𝛼2
 . If that is the 

case, V is a linear function of u1, V is appearing here. So, obviously y2 is correlated with u1 y 

2 is actually correlated with u1 that is how we can prove. 

 

Now, there are two cases where y2 is actually not correlated with u1. What are the two cases? 

If α2 = 0 is the first case and second one is that u1 and u2 are uncorrelated. These are the two 

conditions. If they are satisfied, then only we can say that y2 is actually not correlated with u1, 

otherwise y2 is always correlated with u1 as v is the error term appearing in y2 equation and v 

is a linear function of u1 and u2. So, as long as u1 and u2 are correlated and α2 is actually not 

equal to 0, then y2 is correlated with u1. Now, when α2 is 0 from the y2 equation, then this is 

also 0. So, that means when α2= 0, then only we can say that from this equation y2 equals to if 

we put 0 this is become 0, this is also become 0, so that means y2 is not correlated to u1. 

 

But, if we assume that α2= 0, that means y1 is not appearing in y2 equation. And if y1 is not 

appearing in y2 equation that means y1 and y2 are not simultaneously determined. So, if they 

are not simultaneously determined, then obviously there cannot be any kind of endogeneity. 



You can easily estimate equation 1 by OLS. We assume that y2 and y1 are simultaneously 

determined. So, by assuming y2 you are breaking the channel. You are saying that there is no 

simultaneity between y1 and y2 and that is the reason this is we can apply OLS there. What is 

the meaning of u1 and u2 not correlated?  

 

So, when I am saying they are not correlated that means I am saying that y2 is actually not 

correlated with u1 due to any omitted variable or measurement error. That is the reason I am 

saying that when I am saying u1 and u2 are not correlated, because if at all y2 has to correlate it 

with u1, u1 and u2 must be correlated. When I am saying u1 and u2 are not correlated, there is 

no simultaneity also. That means, I am ruling out the possibility of two other channels of 

simultaneity. What are those? One is omitted variable bias and second one is measurement 

error. That is very clear. So, this α2 = 0 and α1 and u1 and u2 are not are uncorrelated, they have 

specific meaning we need to understand that. I will repeat once again, when α2 = 0, that means 

y1 is not appearing in y2 equation. 

 

And that means we are saying that these two variables are not simultaneously determined. Then 

you can obviously apply OLS to estimate equation 1. When I am saying u1 and u2 are 

uncorrelated, that means, I am actually ruling out the possibility of other two sources of 

endogeneity which are measurement error and omitted variable bias. So, this simple model can 

actually explain what exactly is the problem of simultaneity bias and how OLS cannot be 

applied in that simultaneous equation model. 


