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What about the second condition? How to check the second condition? How to check whether 

covariance between 𝑧! and 𝜇! not equals to 0. 

𝐶𝑜𝑣$𝑧𝑖, 𝜇𝑖% = 0 

 Now this is something which is really difficult. There is no direct mechanism by which we can 

actually check this condition whether 𝑧! is correlated to the error term because error term is 

something which is unobservable. 

 

But there is some indirect way, what is the indirect way? We must ensure that 𝑦! is not at all 

dependent on 𝑧!, if that we can ensure that means  

𝑦! = 𝛼 + 𝛽#𝑥#! + 𝜇! 

 

and we are thinking 𝑧! as an instrument. So, that means 𝑧! is highly correlated with the endogenous 

variable but this correlation should not be there, 𝑧! should not have any impact of 𝑦!  because if z𝑧! 

has some impact on 𝑦!, obviously 𝑧! will qualify to be included in the model itself. 



And the moment we include this model this variable in the model we can no longer ensure that 𝑧! 

and 𝑢! they are actually uncorrelated. At the same time 𝑢! should not capture any variable which 

is actually correlated with the 𝑧!. So, that means what we are doing indirectly we are saying 𝑦!  is 

related to𝑢! because 𝑢! captures all those variables which has impact on 𝑦!. So, the moment I say 

that 𝑧! is uncorrelated with 𝑦!.  

 

That means we are saying 𝑧! is actually uncorrelated with 𝑢! as well, 𝑧! is not correlated with 𝑦!  

ensures that 𝑧! is not correlated with the 𝑢!. This is how indirectly we can ensure that 𝑧! the second 

condition is also satisfied but there is no direct mechanism to test this. So, before selecting the 

instrument we must be very careful and think whether is there any connection between this father’s 

education and somebody's wage.  

 

If at all some connection is there then we cannot include, this is how we have to identify an 

instrument. Now suppose somebody find a proxy for this IQ variable, a proxy or I would say that 

a good proxy becomes a bad instrument. Why this is so? Suppose  

𝑦! = 𝛼 + 𝛽#𝑥#! + 𝜇! 

this is the model, 𝑢! so this is the model and 𝑥$! is actually excluded from this model. What is 𝑥$!? 

𝑥$! is basically ability and we are using a proxy is let us say IQ.  

 

Now the question is whether IQ is a good instrument or a bad instrument? That is the question. 

Now since IQ is a good instrument good proxy for 𝑥$!. That means we can easily include IQ in the 

model itself. That means what I am saying IQ has a direct connection with 𝑦! itself and what I said 

if IQ is correlated with 𝑦! that means IQ is also correlated with the error term as well because IQ 

qualifies to be an explanatory variable in the model.  

 

And the moment the variable is included it cannot be an instrument. So, the variable must be 

excluded, 𝑧! must be excluded from the model and it should be exogenous because 𝑧! and 𝑢! not 

equals to zero, the moment is it included we cannot ensure that it is not correlated with the error 

term. That is why we say that a good proxy makes a case for a bad instrument that we need to 

understand. 
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So, if we extend this model, let us discuss IV in a multiple regression model. Let us assume that 

this is our model  

𝑦# = 𝛼 + 𝛽#𝑦$! + 𝛽#𝑧#! + 𝜇! 

 

this is the model and 𝑧$ is excluded variable such that  

𝐶𝑜𝑣$𝑦2, 𝑢𝑖% ≠ 0 

implies y 2 is endogenous.  

𝐶𝑜𝑣(𝑧1𝑖, 𝑢𝑖) = 0 

implies 𝑧# is exogenous. 

𝐶𝑜𝑣(𝑧2𝑖, 𝑢𝑖) = 0 

 

these are the assumptions to satisfy. So, if that is the case when y 2 becomes and covariance 

between y 2 and z 2 is actually not equals to 0, so this implies z 2 is actually an instrument.  

 

Before we talk about these two variable models in this context when 𝑧!. 
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This context we said that 𝑧! is an instrument for 𝑥#!. How to estimate β1 hat? 

β-#'( =
∑(𝑧! − 𝑧)1)(𝑦! − 𝑦))3333

∑(𝑧! − 𝑧)1)$
 

 

this is the β 1 hat this is IV. So, the IV estimates of β 1 hat is given by z i - z bar y i - y bar divided 

by z i - z bar whole square, that means our originally β 1 hat OLS was if you look 

β-#*+, =
∑(𝑥! − 𝑥)1)(𝑦! − 𝑦))3333

∑(𝑥! − 𝑥)1)$
 

So, if you compare β-#*+, and β-#'(you can easily understand we are just replacing x by z then we 

are getting the formula of β-#'(. Now from this formula we can easily understand if z i = x i then 

IV estimates becomes OLS which implies an exogenous variable is its own instrument, that is the 

point I wanted to make.  

 

So, if we have data on z and y, we can easily estimate this β-# what we are interested in coefficient 

please keep in mind. We are actually interested in coefficient of 𝑥# I that means in this which 

function we are interested in estimating returns to education and that returns to education we are 

actually estimating indirectly by using an instrument for 𝑥#!. How to estimate with the data and 

software? That I will discuss in detail in a later part using the statistical software stata.  

 



For the timing just keep in mind we are interested in β-# but we are not able to use OLS because 

𝑥#! is correlated with the error term. That is why you are using this 𝑧!, 𝑧! is an instrument we are 

using and this is the formula simply replacing x by z in the OLS formula we will get the IV 

estimates. That means when 𝑧! becomes 𝑥!, IV estimates converge to OLS and that implies an 

exogenous variable is its own instrument that is the point.  

 

With this now we are coming to the IV concept in a multiple regression model. Let us say  

𝐿𝑛(𝑤𝑎𝑔𝑒)! = 𝛼 + 𝛽#𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛#! + 𝛽$𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒#! + 𝜇! 

we not only have one endogenous variable in the model we are also having one another variable 

which is exogenous experience in the model.  

 

How will you estimate this model? That means since y2 is correlated with u the error term we need 

to use an instrument which is 𝑧$ here. So, how to estimate this model, the first step of estimating 

this model is we will write an equation like this  

𝑦$! = 𝜋- + 𝜋#𝑧# + 𝜋$𝑧$ + 𝑣! 

This equation it has a specific name in the context of instrumental variable estimation and 

simultaneous equation model. This equation is called reduced form equation and the equation of 

our interest is called structural equation. Why this is called structural equation? Because this is the 

equation which is derived from an economic theory. What is the economic theory? Economic 

theory of wage determination, economic theory of labour market says that wage is actually a 

function of education as well as experience which is coming from a labour market theory.  

 

This equation explains the structure of a model structure of a theory that is the name structural 

equation. But this reduced form equation is not coming from a theory rather this equation is 

formulated by following this definition. What is the definition of a reduced form equation? 

Reduced form equation is where an endogenous variable or I would say endogenous independent 

variable is expressed as a function of all exogenous and here I am saying all included plus excluded 

exogenous variables.  

 

So, while specifying the reduced from equation we must keep one thing in mind that it is a function 

of an endogenous independent variable, please be very careful. Here we have in this equation we 



have two endogenous variables y1 is indigenous variable, y2 is endogenous variable. We are not 

talking about y1 because y1 is the dependent endogenous variable, dependent variable is always 

endogenous.  

 

So, we do not have to bother anything about the dependent variable. Our entire discussion is 

focused only the independent endogenous variable y2. So, while formulating the reduced form 

equation, what is the definition? y2 should be a function of all exogenous variable included plus 

excluded. So, when we write the reduced from equation firstly you specify your included 

exogenous variable which is z1.  

 

Then you come back and include the excluded exogenous variable z2 also in this reduced form 

equation. first step should be to included exogenous variable which is already there in the model, 

otherwise you may forget in the process. That means from these; what we can say that 

𝑦$! = 𝑦 ∗= 𝑣 

What is y star? This component  𝜋- + 𝜋#𝑧# + 𝜋$𝑧$ we call that as y star.  

 

This is the component which is y* is a systematic component and this v is non-systematic 

component. 

𝐶𝑜𝑣$𝑦∗, 𝜇𝑖% = 0 

 

That means I can say covariance between y star and u actually equals to 0. But this v this error 

term  and u they are correlated and that is the reason y2 is correlated with the error term. 

𝐶𝑜𝑣$𝑣, 𝜇𝑖% ≠ 0 

 

In my original model y2 is actually correlated with the error term that is why y2 is called an 

endogenous variable. So, to solve that endogeneity problem what we are trying to do, we are 

formulating a reduced form equation and then we are saying y2 is decomposed into two 

components y* which is 𝜋- + 𝜋#𝑧# + 𝜋$𝑧$.  

 

The first component of the reduced form one and the error term while the first component y star is 

not at all correlated with the error term. It is not at all correlated with v also we assume this v is 



correlated with the error term and that is why y2 is correlated with the error term. So, the channel 

through which the endogeneity or relationship between y2 and u runs is actually this v. So, what 

we need to do then?  

 

We need to get an estimated value of this y* and that estimated value since that is not correlated 

with error term, we will put again in the structural form equation.  

(Refer Slide Time: 23:28) 

 
In the second step, y* is actually an estimated value of this which is let us say y* is estimated as 

let us say 

𝑦$ = 𝜋- + 𝜋#𝑧# + 𝜋$𝑧$ + 𝑣! 

 

 y hat or this is let us say y 2 hat is estimated  

𝑦D$ = 𝜋-E + 𝜋#E𝑧# + 𝜋$E𝑧$ + 𝑣! 

Then if we put the model in the original equation, so here our original equation was this. So, in 

place of y2 now I will put 𝑦D$. So, what will happen then in the original model if I put so our original 

model was if we put 𝑦D$in the structural equation, we will get we will get  

𝑦# = 𝛼 + 𝛽#𝑦$E+ 𝛽$𝑧# + 𝛽/𝑣 + 𝑢 

that means the structure in the new structural form equation the error term is this which was earlier 

u, now it is becoming β3v this is the composite error term. 

 

So,  



𝐸$𝛽3𝑣 + 𝑢% = 0 

𝐶𝑜𝑣(𝑦*2, 𝛽3𝑣)=0 

So, in this equation if we plug in then this earlier the problem what y2 hat was correlated with the 

error term it is no longer correlated with this because we have solved this problem by getting the 

estimated value. This process, this is the actual estimation process of the instrumental variable 

estimation. 
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Now suppose we will consider another model where we have multiple instrument for a single 

endogenous variable. So, let us say that this is our model 

𝑦# = 𝛼 + 𝛽#𝑦$ + 𝛽$𝑧# + 𝑢 

 

 but we have two excluded variable which are z2 and z3 such that  

𝐶𝑜𝑣(𝑦!, 𝑧!) ≠ 0  ; 𝐶𝑜𝑣(𝑧!, 𝑢) = 0 

𝐶𝑜𝑣(𝑦!, 𝑧") ≠ 0  ; 𝐶𝑜𝑣(𝑧", 𝑢) = 0 

 

So, we will say that we have now two instruments z2 and z3 for the single endogenous variable y2, 

if that is the case when we have multiple instruments which instrument to use and what should be 

the estimation strategy, that we will discuss in our next class. So, far we assumed that we have one 

endogenous variable for which we could identify only one exogenous instrument. 

 



But when you have multiple instruments, it is possible that sometimes there are two instruments 

two exogenous variable which are highly correlated with the endogenous variable in a model. If 

that is the case, should we use one instrument or both the instrument and what should be the 

estimation strategy that we will discuss in our next class, thank you. 


