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 So, welcome once again to our discussion on panel data econometrics and yesterday we 

were  learning about how to estimate a fixed effect model and how to interpret the 

coefficients,  what are the different interpretations of 3 R square measure what we get 

after estimating  a fixed effect model. And then we have also compared the fixed effect 

coefficients  with LSDV and then we said what we observed the coefficients  are actually 

same in magnitude as well as in their standard error. But LSDV model  is practically very 

difficult to implement when you have too many observations right  because it includes 

too many dummies in the model right.  But one thing we have not discussed about the  R 

square measure in LSDV and fixed  effect model and that we would like to see today  in 

our  estimates. So, we are going  to use the same data set  which is  basically the impact 

of labour or job market training  on employees performance. So, this is Xt set once again 

Xt set F code  and then F code and then ER. 

 

 So, what we will do we will first estimate the fixed effect  model which is Xt reg then we 

have we have performance measured by L_scrap and then  we have grant and we have 

grant previous year and then we will say that this is basically  the fixed effect model that 

we are going to estimate.  So, this is our fixed effect model we have estimated and from 

this what you can observe  that within R square basically which is most relevant for the 

fixed effect model because  that explains what is the total percentage variation time 

variation in Y we can actually  explain by time variation in X that is mostly 17.34 

percent.  Now the same model if we estimate by LSDV sorry this is once again. 

 

 So, instead of Xt  reg now we have to put reg command. So, this is basically reg  regres 

then L scrap  then grant and 1 and i dot F code that is the command when you are using 

LSDV model  and here we are considering one way error component model. So, there is 

no time fixed  effect. So, this is the LSDV model we have estimated and now if you look 

at the R square  of this LSDV R square is 92.51 percent whereas in fixed effect model  

here it is only 17. 



 

34 percent.  Now if you look at the R square measured that means LSDV gives almost 5 

times higher R square  than the fixed effect model does that mean an LSDV model is 

always preferred to fixed  effect first of all why is the R square so high in LSDV model 

can you think of why the  R square is so high in LSDV. So, this is the question I am 

asking why the R square. So,  this is Fe versus re LSDV and my question is why is R 

square LSDV is so higher than  as compared to R square Fe. Now the answer is very 

simple because in LSDV we are actually  including too many explanatory variable in the 

form of too many dummies. 

 

 So, obviously  when you include too many dummies that means you are almost 

explaining the unobserved heterogeneity  quite well by including too many individual 

specific dummies that is the reason R square  is too high in LSDV. So, there are too many 

explanatory variable that is the reason there  are too many  explanatory variables in 

LSDV in the form of individual specific dummies.  As a result we are able to explain  a 

significant portion of YIT that is the reason.  But that does not mean that LSDV is always 

preferred to Fe because if you include too many explanatory variables  obviously you will 

be able to explain a larger variation in the dependent variable but based  on the R square 

we will never select Fe and LSDV there should be a proper justification.  When there are 

too many observations we cannot actually apply LSDV because of the  degrees of 

freedom problem and it would be practically impossible to estimate sometimes. 

 

  That is one thing I would like to mention upfront.  Now in the fixed effect model when 

we write our equation is   𝑌𝑖𝑡 =  𝛽1𝑥𝑖𝑡 + 𝐴𝑖 + 𝑈𝑖𝑡. So, this is the model and the 

assumption what  we made that covariance between XIT and Ai is actually not equals to 

0 for Fe to be implemented.  Now suppose covariance between XIT and Ai is actually 0. 

There is no correlation between  the unobserved heterogeneity individual specific time 

constant effect and the explanatory variable. 

 

  None of the explanatory variable is actually correlated with the unobserved effect. So,  

in that case that fixed effect transformation is not applicable because if we remove that  

then what will happen we are actually calling for some kind of inefficiency in our model.  

So, when that is not correlated we need a specific form. So, when the next question  is 

then if our model is 𝑌𝑖𝑡 =  𝛽1𝑋𝑖𝑡 + 𝐴𝑖 + 𝑈𝑖𝑡, covariance between Ai and UIT is actually 

0. Then the first question that  comes to our mind should we work with a single cross 

section?  We can actually work with a single cross section when unobserved effect is 

actually  not sorry here I made a mistake here this is XIT. 

 

 When the unobserved effect is actually  not correlated with the explanatory variable we 

can always work with a single cross section  because the major main reason for using 



panel data if you recall I said that if you use  more than one period's data then actually we 

can eliminate Ai by first difference or  fixed effect transformation. That was our 

objective. So, we included Ai in the model  and we have also accommodated the fact that 

this Ai is actually correlated with your XIT.  Now if they are not correlated then there is 

no need of panel data we can actually work  with a single cross section. But if we work 

with a single cross section then what will  happen the other advantage of using panel data 

we cannot enjoy and what is the other  advantage? Other advantage is capturing multiple 

distributions for the dependent and independent  variables. 

 

 When you work with a cross section you will be able to capture only a single  cross 

section for both YIT and XIT. So, that is the reason. So, we can work with a single  cross 

section in this context but we will not be able to  capture multiple distributions of YIT 

and XIT in cross sectional data.  So, we will not be able to enjoy the other benefits of 

panel data. So, because of that  we still need to work with panel data but fixed effect and 

first difference transformation  will not work we need to have a different model known as 

random effect model. 

 

 So, that  means in random effect model please keep in mind the main assumption is 

actually this  that unobserved effect individual specific time constant unobserved 

heterogeneity is  not correlated with the explanatory variable that is the assumption.  Now 

random effect model we can get starting from a fixed effect model only. So, in fixed  

effect model our equation is YIT equals to beta 1 XIT plus ai plus uit. Now what I will  

do I will decompose this unobserved effect ai as β0 plus εi. What is this  β0? β0 is 

actually the common unobserved effect  what I can say that this is average and epsilon i 

is epsilon i. 

 

 So, β0 is the average  or common unobserved effect and εi is a random deviation from 

β0. So, if  we think of ai is basically ability which is the unobserved factor β0 indicates  

what is the average ability in that sample and ε i is basically a random deviation  from 

that common ability factor. So, εi is basically the ith individual's  random deviation from 

the sample average ability factor it can be positive or it can be negative.  So, if we 

decompose ai into β0 and εi then our model would become YIT  equals to β1 XIT or I 

will first write the intercept 𝛽0 + 𝛽1𝑋𝑖𝑡 + 𝜀𝑖 + 𝑢𝑖. And these together sometimes you 

can write VIT composite error term  which is indicated by εi and ui t. 

 

 Now we cannot estimate this model so that means this  becomes β0 plus β1 XIT plus 

VIT.  Now when this ai this ε i and the assumption what we make here covariance 

between ε i and  XIT equals to 0. Now in this model can we apply pooled OLS  can we 

apply pooled OLS.  Since XIT is not correlated with ε i can we apply pooled OLS. Now 

pooled OLS is not applicable  why because this ε i we cannot apply pooled OLS  as ε i 



will  always be there in VIT for all t and as a result of which  VIT will be serially 

correlated  leading to autocorrelation. 

 

 So, pooled OLS is not applicable this is the justification. Then what we will do we will 

make  a different type of transformation when our model is this. So, YIT equals to β0 

plus β1  XIT plus VIT equals to ε 0 plus UIT so that is basically VIT. So, what we will 

do  instead of removing the entire ε this is sorry this is ε i.  Now what we will do we will 

use this transformation  𝑌𝑖𝑡 − 𝜆𝑌𝑖̅ = 1 − 𝜆𝛽0 +  𝛽1𝑋𝑖𝑡 − 𝜆𝑋𝑖̅̅̅ + 𝑣𝑖𝑡 - λ𝑉𝑖𝑡̅̅ ̅̅   and what is 

this λ how is this λ defined λ  equals to (1- σ ^2 U) /  σ^2 U + t into σ^2ε to this. 

 

  Where σ^2 U is basically variance of U and σ^2ε  is basically  variance of ε.  Now, the 

question is then to get this transformation we need to have 𝜎̂ sorry this is λ. λ is always 

unknown but can be estimated using  𝜎2𝑢̂ and 𝜎2 𝜀̂ from FE or LSDV.  So, this 𝜎2𝑢     

𝜎2𝑒  they are all population unknown population parameter  but once we estimate a 

model either using fixed effect or LSDV model we can always get their  sample 

counterpart which is𝜎2𝑢̂ and 𝜎2 𝜀̂  and using this we will  get 𝜆̂ . So, this is the random 

effect transformation this is called random effect  transformation RE transformation. 

 

  That means instead of removing the entire yi bar what we are doing this is called quasi 

time  demeaning.  Fixed effect transformation is called time demeaning because that was 

𝑌𝑖𝑡 -  𝑌𝑖̅  here we are removing only a fraction of 𝑌𝑖̅  λ(𝑋𝑖̅̅̅) that is why instead of calling 

time demeaning random effect transformation is  called quasi time demeaning model. So, 

with this what we are doing we are solving the auto  correlation problem at the same time 

we are solving the auto correlation problem that we  were having in the model of pooled 

OLS. So, this transformation is known as when we apply  OLS in this transform model 

that is called generalized least square. So, application of OLS  this is called GLS which is 

nothing but application of OLS in the transform model. 

 

  And the transform model is basically this model which is the quasi time demeaning 

because this Vit -λ this is vi bar lambda vi bar is basically free from the auto correlation 

problem.  Free from the auto correlation problem that is how when the unobserved effect 

is actually  uncorrelated with the explanatory variable instead of using pooled OLS or 

fixed effect  transformation what we do actually we use the lambda transformation that 

means a lambda fraction  of yi t and  xi t sorry yi bar and xi bar is removed from yi t and 

xi t.  Now this random effect model if we look at very carefully we can understand a 

random effect model  is the more generalized version of pooled OLS and fixed effect 

model.  We can prove that for example let us say two alternative cases. Case one  let us 

assume that sigma square epsilon is sigma square epsilon  tends to zero that means which 

implies insignificant unobserved effect. 

 



  So if sigma square e sigma square epsilon tends to zero from this lambda expression of 

lambda  you can understand this becomes 0 then this become 𝜎2u  divided by sigma 

square u  square root that also become one so lambda will become equals to 1 – 1 equals 

to 0.  So if that is the case if λ is 0 then our model becomes yi = β1xit +vit.  When lambda 

becomes zero and this is nothing but pooled OLS  which is quite reasonable that means 

what does this transformation what does this  particular case indicate if at all the 

unobserved heterogeneity is insignificant in our model  why should I go for fixed effect 

or random effect transformation?  Because the entire idea behind using the fixed effect 

and random effect transformation was  a significant presence of the unobserved effect ai 

if that itself is insignificant then we can  very well apply the pooled OLS because that 

was only creating problem. If you look at  why pooled OLS was not applicable because 

in this model this epsilon i will always be  common in this v i t so if we apply pooled 

OLS then v i t will be auto correlated serially  correlated so if that is not significant then 

instead of using fixed effect or random effect  transformation what actually we should do 

we can very well use a pooled OLS model.  So that means we can understand that pooled 

OLS is a specific case of this  random effect transformation when lambda equals to zero 

we get pooled OLS 

 

 Similarly case two  when t total number of time period tends to let us say infinity you 

have a large number  of time periods then what will happen if that is the case then lambda 

will become  1 minus when t tends to infinity these denominator t multiplied by sigma 

square e also become  infinity and sigma square u when it is added with infinite that is 

also become infinite  and 𝜎2u/ ∞ =  zero so 1 minus 0 equals to 1.  When lambda equals 

to 1 this transformation becomesYit - 𝑌𝑖̅ = β1xit - 𝑋𝑖̅̅̅ + v i t - 𝑉𝑖̅ which is nothing but 

fixed effect model.  So that means with these two cases what we can say that pooled OLS 

and fixed effect  pooled OLS and fixed effect models are special cases of the random 

effect model because both  the models can be derived from the random effect model 

assuming a specific value of λ. So what  we can say that both pooled OLS and Fe are 

special cases  of random effect model. 

 

  That we have to understand.  So when λ actually tends to 1 then random effect estimates 

will also tend to fixed effect  estimates when lambda equals to 0 we can understand that 

random effect estimates will become will tend  to the pooled OLS. Now what we will do 

we will take one data set and we will  try to understand how to estimate a random effect 

model and their interpretation. 
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