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Qualitative Response Model-Part III 

 So, welcome once again to our discussion of Qualitative Response Model that we are 

discussing  in our last class right. So, we will continue again  the qualitative response 

models from  today also. So, in our last class if you recall we discussed basically we 

started with  our discussion with linear response linear probability model and we said that 

the linear  probability model that takes this form p i = α+βxi. So, this  is what is this p i? p 

i is basically  probability that  y i equals to 1 that is p i. And then  we said that this linear 

probability model or in short LPM what is the major limitation  of this? Here the 

probability is modeled as a linear function of x right linear function  of x. So, that means  

if you think about the  house ownership problem that we are  discussing  in our previous 

class. 

 

 So, what happens actually when the individuals income  is very low  in that range almost 

all the people they do not have a house actually.  So, at lower income people do not have 

a house almost all of them and at a higher level of  income  they will almost all of them 

will have a house, but then once you achieve  that level of income then probability of 

owning a house that does not change actually. For  example, when  your income is 1.5 

lakhs per month then you have a house. 

 

 So, that  is 1.5 lakhs right and that probability of owning a house at that income range is 

almost  1, but suppose now income is increasing from 1.5 lakhs to 2 lakhs then once you 

have the  house then you cannot buy you that particular individual would not buy any 

new  house right. So, that means basically it says once you achieve that level of income 

the  probability does not change it will almost 1 and at lower level of income nobody is 

having  a house and at the lower level of income when your income is let us say  5000 per 

month  to 5500, 5600 like that probability does not change that much. So, at the lower 

end and  at the higher end it is constant and it changes in between. 

 

 So, that means a  linear characterization of probability is a much problematic thing in 

this context.  So, what we actually want if you plot your probability in this way let us say 

this is  0 and this is p i this is let us say minus infinity this is plus infinity. So, what we  



want our probability should be like this it should behave in this way and this is what  is 

called a sigmoid s curve type relationship this is a sigmoid s and to capture this type  of 

non-linearity. So, that means in this axis I am measuring  let say  α+βxi right it ranges 

from this to this and  and this is equals to z i. So, z i basically ranges from minus infinity  

to plus infinity. 

 

 So, this is z i and what we want is the relationship of z i and p i  like this at the lower end 

it will almost 0, but it will never touch 0 here it is 1  actually it will  approach towards 1 

at higher level of income, but it  will never touch 1. So, basically it asymptotically 

approaches  1 and 0 and after that suppose from this portion it almost constant here also 

once  you achieve here it almost constant it is not changing and it is changing in this 

particular  this region. So, to overcome the problem of linear characterization  of 

probability with z i in logit model what we assume that p i = 1 - p i.  And by 1 + 𝑒−𝑧𝑖  

and from here you can understand as z i as  this model ensure as z i in ranges from minus 

infinity to plus infinity then your p i will  become 0 to 1 that is the advantage of this 

model that is the advantage of this logit  model. Is it clear? So, I will repeat once again 

this linear probability model it assumes  probability is a linear function of x here x is 

income linear function of x or you can  consider α+βxi entire thing is z. 

 

 So, it is a linear characterization  between p i and z i, but in reality what happens is that 

probability does not change linearly  when income changes from 15000 to 20000 the 

change in probability is not same when income  changes from 1 lakh to 1 lakh 20000. 

Probably when income changes from 1 lakh to  1 lakh 20000 you will observe either very 

very insignificant change in probability of  owning a house or no change at all. So, it only 

changes from 20000 to 1 lakh in that  range in this range actually probability changes 

after that it constant. Similarly at the lower  end and to overcome that problem we  

hypothesize a non-linear characterization of probability  of owning a house p i with the 

income x i and that is basically the logit model which  is (1/1 + e)  −𝑧𝑖. And as z i ranges 

between from minus infinity  to plus infinity p i will range between 0 and 1 that is how 

logit model overcomes the  problem of linear probability model. 

 

  But then you end up having a non-linear model p i =(1/1 + e)  −𝑧𝑖 , you cannot estimate 

directly this model applying the linear technique and that is  the reason we characterized 

that means, we transform the apparently looking non-linear  model into a linear model by 

taking log and then we discussed how to estimate that model  using the maximum 

likelihood estimates or MLE where OLS does not work that is how we  discussed about 

the linear probability model and the logit model.  Now, today we will discuss another 

qualitative response model which also characterize non-linear  relationship between the 

probability and x i and this models name as probit model.  So, let us try to understand the 

theoretical structure of this probit model.  Now, to understand the theoretical structure of 



this probit model we will introduce a variable  which is called latent variable. Let us say 

𝑦𝑖 ∗= 𝛼 + 𝛽𝑥𝑖 + 𝑒𝑖  here y i star is called a latent variable which is unobserved and then 

there is a relationship between y i and y i*. 

 

  Now, y i equals to 1 when y i* greater than 0. Now,  you might be thinking what is this 

latent variable and how can you get a relationship  between y i and y i *. Think about the 

house owning problem. Given your income each  and every individual calculate some 

amount of utility of satisfaction of buying a house  or buying a car or anything and you 

will observe that individual has actually bought a house  when the individual derives a 

positive amount of utility. Is not it? A positive amount of  utility. 

 

 If the utility is negative then that means if there is dissatisfaction of owning  a house at 

that level of income then you will see that individual has actually not bought  the house. 

Now, you might be thinking what is the disutility of owning a house? Actually  there is 

no disutility of owning a house as such, but at that level of income when  my income 

level is very less let us say 10,000 and if I buy a house how buying a house is  not my 

priority at that level of income because I have so many other important things to do.  So, 

if I buy a house and then if I start giving EMI for that house probably that will give  me a 

satisfaction. So, each and every individual will calculate the utility at that level of  

income of owning a house. Depending on the utility household will decide or the 

individual  will decide whether to buy the house or stay in rented apartment. 

 

 But utility is something  you cannot observe. What you observe is actually the decision. 

And what is the decision?  Whether I have bought or not that is the realization. So, that is 

why you cannot observe  the utility, but you can observe the decision. Here y i is 

basically the decision, the ultimate  realization whether the event has happened or not. 

 

 But in between how and what amount  of utility the individual has derived that you 

cannot observe and that unobserved utility  let us say we defined as y i*. It depends on 

your income, but then there is some amount  of error term also which makes the utility 

unpredictable unobserved. So, when y* > 0 you derive a positive amount of utility and 

then y i = 1, 0 otherwise.  This is the structure of the probit model that y i is related to an 

unobserved variable  y i* which is called latent variable. Now, once you hypothesize that 

type  of relationship between y i and y i* then what you have to do basically when you 

are  calculating probability y i = 1 that means you are saying in turn it  is nothing but 

probability y i* > 0 because then only y i  = 1. 

 

 Now, from the relationship you can easily understand  when can you get y i* > 0. So, 

from this relationship I can easily understand  that y i * will = 0 greater positive when 

your e i is actually >  than –(α+ βxi). From this relationship it is very easy to  understand 



y i* will become greater than 0 when e i is actually >  –(α+ βxi). And if you recall the 

definition of probability density function  from the properties of probability density 

function we can write when e i is actually  a random variable and this is less than which 

is greater tha α+ βxi. then  we can say that this is nothing but 1 – (f (α+βxi))   that  is how 

you can that is how you can derive this one.  So, what is this (f (α+βxi)) ? This is actually 

I will say that is cumulative  distribution function. 

 

 Now depending on what  type of specific cumulative distribution function this f (α+βxi))   

will take, you  will get either linear probability model, logit model or probit model. What 

I am saying?  This f (α+βxi))  can take three different values. It can be a cumulative linear  

distribution function which is that means I can say that f (α+βxi)) ,  can be simply be f 

(α+βxi)) = (1/1 + e).
−𝛼+𝛽𝑥𝑖

. And then you will get the logit  model. And in the context 

of probit this f (α+βxi))  takes this type of form equals to and this is called this is actually 

cumulative cdf  of a logistic distribution function. 

 

 So, this is basically this is actually f (α+βxi)), I will say that cumulative distribution 

function or cdf.  So, in the context of logit this is cdf of a logistic distribution function,. 

And in the context of probit, this cumulative distribution  function in the context of t, in 

the context of probit this f (α+βxi))  is actually the cumulative distribution function of a 

normal distribution. So, that  means, this is normal cdf, cdf that means in the context of 

probit what I can write  is that this p i = f (α+βxi))  ∫ 𝑓𝑧𝑑𝑧
𝛼+𝛽𝑥𝑖

−∞
.  And what is this f z? f z 

is basically a normal probability density function and I can write  that  where  

f z = (1/√2 ) / 2pi𝜎2*𝑒−𝑧𝑖^2/2. 

 

 And what is z i? z i is actually  how it is defined? z i is defined in this way  (z i –

mu/σ) (z i – mu/σ) 2 but a standard normal variable. Is this clear? So, that means, here in 

the context of probit  only difference that it makes is f (α+βxi) takes the cumulative since 

I  am taking the integration of this f z which is basically a normal distribution function.  I 

am taking when I am taking integration that becomes the cumulative density function or  

cdf. So, this is the cdf of a normal distribution function where f z = (1/√2 ) / 

2pi𝜎2*𝑒−𝑧𝑖^2/2 and how z i is defined? z i is defined  as z i small z i bar minus mu 

divided by sigma whole square that means z i is basically a  standard normal variable. So, 

if p i equals to this then from  here you can say that means  α+βxi = 𝑓−1𝑝𝑖 that is  how 

you can get. 

 

  Now if you recall the log likelihood function what we got in the context of logit same 

type  of log likelihood function you will get in the context of probit also that means your  

log L ∑ 𝑦𝑖* log p i +     ∑(1 − 𝑦𝑖) ∗ log (1 − 𝑝𝑖) and that you are trying to maximize with 

respect to α and  β. And this p i what is this p i? p i = ∑ 𝑦𝑖𝑛
𝑖=𝑛𝑖+1  summation y i,and then 



this is log of what is p i?  p i is basically  f (α+βxi)  ∑(1 − 𝑦𝑖) = log (1 –f(α+βxi)). So,  

this is your log likelihood function in the context of probit in the context of probit  and 

that you maximize once again with respect to α and β and then you will get your  α* and 

β*. You will get α* and β* by maximizing this.  So, that means this is an alternative 

derivation of the probit model and if you follow then  you can derive the logit model also 

in this way because up to this when p i =  f of f (α+βxi)  that is same and depending on 

which particular cumulative density  function you will get it will define whether it is a 

logit model or probit model or linear  probability model.  

 

 So, f (α+βxi) = α+βxi  in the context  of linear model, linear probability model f(α+βxi)) 

= (1/1 + e).
−𝛼+𝛽𝑥𝑖

 in the context of logit.  That means it assumes cumulative density 

function of a logistic distribution and here it is  the cumulative density function of a 

normal distribution function, where f z = f z = (1/√2 ) / 2pi𝜎2*𝑒−𝑧𝑖^2/21   z i is actually 

standard normal variable defined as and you know the standard normal variable  it has 0 

mean and 1 = 𝜎2,  .  Thank you. 
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