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To recap, why dynamic panel data is required? Because if you recall we say that many of the 

economic relationships are dynamic in nature. For example, in the context of agriculture when 

the farmer is deciding about how much land to be allocated for ith crop in tth period that basically 

depends on previous year’s production. Because previous year’s production would have resulted 

in some price followed by some amount of profit and that will motivate the farmer to decide 

about the land allocated for the same crop this year. So, a heavy profit or huge profit for the ith 

crop last year may again motivate what the farmers to go for larger amount of land to be 

allocated for the same ith crop in tth period as well. And similarly, we have also discussed how 

in the context of a farm production, if the farm would have produced more in the last year and 

could not sell much in the market, so much of the production would have gone for inventory 

and that will reduce the amount of production this year. Similarly in the context of income for 

a country in India's income or GDP last year will basically determine what would be the GDP 

for this year as well. 

Many a times when you apply for job market your employer will ask you what is your last scale 

that you used to draw in your previous organization. So, that means while fixing your grade or 

payment in the new organization your new employer will have a look on your previous salary. 



So, these are all many examples that we can draw upon to show that how economic relationships 

are dynamic in nature. And how do you model this dynamic relationship? just by adding the 

lagged value of your dependent variable. So, that means we model dynamic panel data in this 

way: 𝑦𝑖𝑡 = 𝛽1𝑦𝑖𝑡−1 + 𝛽2𝑥𝑖 +  𝑎𝑖 + 𝜗𝑖𝑡  y , where (𝑎𝑖 + 𝜗𝑖𝑡) is basically the composite error 

term which is again is 𝑢𝑖𝑡. Sometimes instead of using the co-efficient 𝛽1, sometimes we use a 

different coefficient just for the notation’s sake to differentiate this variable with the other 

explanatory variables. 

So, let us say this is:   𝜌1𝑦𝑖𝑡−1 + 𝛽2𝑥𝑖𝑡+𝑢𝑖𝑡 

Then we said that this dynamic panel data model there is another name for this model which is 

called partial adjustment model. And to understand why this is called partial adjustment model? 

Then we can just subtract 𝑦𝑖𝑡−1 from both sides of the equation. So, if we subtract 𝑦𝑖𝑡−1 from 

both the sides of equation 1 what you are going to get is: 𝑦𝑖𝑡 − 𝑦𝑖𝑡−1 = (1 − 𝜌)𝑦𝑖𝑡−1 +

𝛽2𝑥𝑖𝑡+𝑢𝑖𝑡 

And see the coefficient (1- 𝜌) basically indicates when 𝜌 equals 1, there is no lag dependent 

variable in this equation. So, simply we can say that ∆𝑦𝑖𝑡 = 𝛽 𝑥𝑖𝑡 +  𝑢𝑖𝑡 

 

So that means there is no presence of lag dependent variable in the model. So, the dynamism 

goes off. So, if we want to have dynamism in the system then the value of 𝜌  should be less than 

1 and that implies this model is ∆𝑦𝑖𝑡 = (1 − 𝜌)𝑦𝑖𝑡−1 + 𝛽2𝑥𝑖𝑡+𝑢𝑖𝑡 

 

So, one thing we have to clearly keep in mind since 𝜌 equals 1 only gives the dynamic nature 

of this model. 𝜌 less than 1 indicates partial adjustment. So it is not a fully adjustment model. 

If anything happens to my 𝑥𝑖𝑡, that will result in a change in y which will be partially adjusted. 

Some part of the adjustment will happen in the next period also. That is the meaning of partial 

adjustment. 𝜌 equals 1 is called fully adjustment model and when it is fully adjusted that means 

for any change in your explanatory variable y changes itself in the same period. So, this change 

is not getting carried over in the next period there is no dynamism in the system. So, to have a 

dynamic panel at a model I must have 𝜌 less than 1 and that is why it is called partial adjustment 

And then we have also discussed briefly in a model like 𝑦𝑖𝑡 = 𝛽1𝑦𝑖𝑡−1 + 𝛽2𝑥𝑖𝑡 +  𝑎𝑖 + 𝜗𝑖𝑡 

there are 2 sources of persistence over a period of time. 

 

The first persistence is due to the presence of this unobserved effect which is 𝑎𝑖 and why it is 

giving persistence? Since 𝑦𝑖𝑡 is actually related to 𝑎𝑖 and 𝑎𝑖 does not have a ‘t’ subscript, that 



means we can say that 𝑦𝑖𝑡−1  is also related to 𝑎𝑖. That means in each period one of my 

explanatory variables, the lag dependent variable is related to 𝑎𝑖. And that is one source of 

persistence, so that means in each period it is related. 

 

And since 𝑎𝑖 component is common in the error term we can say that in successive periods 𝑎𝑖 

is all your error terms are getting correlated and leading to autocorrelation problem. 

Autocorrelation arises for another reason in this dynamic panel data model since 𝑦𝑖𝑡  is related 

to 𝑦𝑖𝑡−1and 𝜗𝑖𝑡, then 𝑦𝑖𝑡−1 is also related to 𝜗𝑖𝑡−1 . Same equation can be written for 𝑦𝑖𝑡−1 .So, 

that means I can say that 𝑦𝑖𝑡 is related to 𝑦𝑖𝑡−1as well as 𝜗𝑖𝑡−1 since 𝑦𝑖𝑡 is correlated with 𝜗𝑖𝑡. 

So, that means I can now easily say that 𝜗𝑖𝑡 is also getting correlated with 𝜗𝑖𝑡−1 through the 

channel of 𝜗𝑖𝑡. And then we said that what is the solution, that means we cannot estimate this 

model by the OLS we must go for the fixed effect transformation to remove the 𝑎𝑖. 

 

But if you go for fixed effect transformation then as we have discussed 𝑎𝑖 will get canceled out 

and then what will happen I will get let us say 𝛽1(𝑦𝑖𝑡−1 − 𝑦𝑖.−1̅̅ ̅̅ ̅̅ ) + 𝛽2(𝑥𝑖𝑡 − 𝑥𝑖)̅̅ ̅̅ +  (𝜗𝑖𝑡 − 𝜗𝑖)̅̅ ̅̅  

Then we said that this fixed effect transformation also does not work because this 𝜗𝑖̅ is nothing 

but 
𝑇
∑

𝑡 = 1
( 𝜗𝑖𝑡)/𝑇 

So, this 𝜗𝑖̅ includes 𝜗𝑖𝑡−1 𝑤ℎ𝑖𝑐ℎ will be related to 𝑦𝑖𝑡−1. That is why this fixed effect 

transformation cannot rule out the correlation between your one of your explanatory variables 

with this transformed error. At the same time when you calculate the mean of 𝑦𝑖𝑡−1 − 𝑦𝑖.−1̅̅ ̅̅ ̅̅  which 

is nothing but 𝑦𝑖.−1̅̅ ̅̅ ̅̅ that also includes 𝑦𝑖𝑡 and that 𝑦𝑖𝑡  would be correlated to this 𝜗𝑖𝑡. 

So, in both the cases we have established that 𝜗𝑖̅  is correlated with 𝑦𝑖𝑡−1.  because 𝜗𝑖̅ includes 

𝜗𝑖𝑡 that is why that is correlated with 𝑦𝑖𝑡−1. Then we have discussed, so when fixed effect 

transformation is not applicable to estimate this type of dynamic panel data model, we can 

actually go forward. So, neither OLS nor fixed effect actually is applicable, straightforward 

OLS application is not possible, fixed effect transformation is also not applicable; both of them 

will lead to a bias and inconsistent estimate. 
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So, OLS application in the original equation and FE transformation will lead to biased and 

inconsistent estimates. And that bias we discussed that is called Nickell Bias which is of order 

1 by T. So, we cannot apply OLS and fixed effect transformation because both of them will lead 

to some kind of bias and that bias is known as Nickell bias because Nickell was the first 

econometrician to introduce this type of bias which is of order T. That means for a small sample 

this bias would be a great amount and we also said that even when T equals 30 that bias is 

amounted to almost 20% of your original estimates. So, when fixed effect transformation and 

OLS does not work then what is the solution available? So, we may go for the first differencing, 

so if we go for first differencing basically that means 𝑦𝑖𝑡 − 𝑦𝑖𝑡−1 = 𝛽1(𝑦𝑖𝑡−1 − 𝑦𝑖𝑡−2) +

𝛽2(𝑥𝑖𝑡 − 𝑥𝑖𝑡−1) + 𝜗𝑖𝑡 − 𝜗𝑖𝑡−1 

 

And once again we can say that this 𝑦𝑖𝑡−1is correlated with 𝜗𝑖𝑡−1 so that means this is correlated 

with the error term. So, you can first differencing is also not able to solve the problem of 

endogeneity because one of my explanatory variables is getting correlated with the error term. 

Now that much we have discussed in your previous discussion, so what is the solution then? 

 

The standard solution is basically the utilization of instruments. As we all know when to solve 

endogeneity problem -when you have some of your explanatory variable is correlated with the 

error term then use the instrument. And this particular idea first was given by 2 famous 

econometrician Anderson and Hsiao in short AH approach. 
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Basically, that means this model turns out to be  

∆𝑦𝑖𝑡 = 𝛽1∆𝑦𝑖𝑡−1 + 𝛽2∆𝑥𝑖𝑡 +  ∆𝜗𝑖𝑡 

So, when correlation between ∆𝑦𝑖𝑡−1 and ∆𝜗𝑖𝑡 is not equal to 0, then the idea is we need to use 

instruments for this ∆𝑦𝑖𝑡−1. We can use 2 types of instruments basically based on an Anderson 

Hsiao. 

 

They say that you can use either second lag of the difference variable that means 𝑦𝑖𝑡−2 or ∆𝑦𝑖𝑡−2 

Second lag of the level or second lag of the difference both of them can be used as IV. That is 

the idea given by Anderson and Hsiao. 
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So, in this case if we use let us assume that we are using 𝑦𝑖𝑡−2. Which is the second lag of the 

level variable we are using as instrument. And then in the Anderson and Hsiao approach my 

instrument matrix will look like this.  

Z = 𝑦𝑖1....

          

     (                  ) 

       𝑦𝑖,𝑇−2. 

So, the first row of this instrument matrix indicates second period and that observation is lost. 

So, we need to remove that observation for each panel and that will lead to, so what I will say 

that first row of the Z matrix indicates second period and the first observation is lost for each 

panel. And this implies a reduction in sample length. So, first observation is lost for each panel 

when your Z matrix is like this, what we are doing? Based on the idea given by Anderson and 

Hsiao we are taking 𝑦𝑖𝑡−2 as the instrument. So, that means the first observation is available 

only from 3rd period to be used in the regression and if we include third period also if we include 

𝑦𝑖𝑡−3 as an additional instrument then Z will become like the following. 
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When you use the 3rd lag also as additional instrument we will lose one more observation and 

then this will become 𝑦𝑖𝑡−3 . So, that means this is for t equals 2 so this is for t equals 3 and this 

is called t equals 4. So, that means I lost 2 observations if we include third lag also as an 

additional instrument. So, that means here what is happening? 

 

In the previous Z matrix I was using only second lag. So, that means using second lag means I 

am using only one orthogonality conditions. And when we are using a 3rd period lag also as an 



additional instrument my Z matrix looks like this. And as a result of which what is happening? 

I am getting more instruments, more orthogonality conditions but at the same time I am having 

less number of observations available for my estimation. So, that means there is a trade-off 

between what you can write that means which implies. 
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So, there is a trade-off between lag length and sampling length. If we use only 𝑦𝑖𝑡−2 as 

instrument then my lag length is only t equals 2, so that means I have preserved sample length. 

sample is not getting reduced but lag length is only 2. so that means I am using one single 

orthogonality condition, I am not utilizing all the available information available in the system. 

And the moment I include additional instrument as 𝑦𝑖𝑡−3 then I am losing 2 observations for 

each panel. So, this basically says that there is a trade-off between lag length and sample length. 

And to avoid this trade-off between lag length and sample length Holtz-Eakin et al. suggested 

that instead of using many more lag as instruments why not using only one instrument 𝑦𝑖𝑡−2. 

For each period, second lag of the untransformed variable as instrument for each period and 

replace all these missing observations by 0. So, that means suggested that using second lag of 

𝑦𝑖𝑡  as only instrument for each period and put 0 for all missing observations. 


